conf.py 16.8 KB
Newer Older
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/usr/bin/env python3
#
# PyTorch documentation build configuration file, created by
# sphinx-quickstart on Fri Dec 23 13:31:47 2016.
#
# This file is execfile()d with the current directory set to its
# containing dir.
#
# Note that not all possible configuration values are present in this
# autogenerated file.
#
# All configuration values have a default; values that are commented out
# serve to show the default.

# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
22

23
import os
24
import sys
25
import textwrap
26
from copy import copy
27
from pathlib import Path
28

Brian Johnson's avatar
Brian Johnson committed
29
import pytorch_sphinx_theme
30
import torchvision
31
32
import torchvision.models as M
from tabulate import tabulate
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
33

34
sys.path.append(os.path.abspath("."))
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
35
36
37

# -- General configuration ------------------------------------------------

38
# Required version of sphinx is set from docs/requirements.txt
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
39
40
41
42
43

# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
44
45
46
47
48
49
50
51
52
53
54
    "sphinx.ext.autodoc",
    "sphinx.ext.autosummary",
    "sphinx.ext.doctest",
    "sphinx.ext.intersphinx",
    "sphinx.ext.todo",
    "sphinx.ext.mathjax",
    "sphinx.ext.napoleon",
    "sphinx.ext.viewcode",
    "sphinx.ext.duration",
    "sphinx_gallery.gen_gallery",
    "sphinx_copybutton",
55
    "beta_status",
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
56
57
]

58
sphinx_gallery_conf = {
59
60
61
62
    "examples_dirs": "../../gallery/",  # path to your example scripts
    "gallery_dirs": "auto_examples",  # path to where to save gallery generated output
    "backreferences_dir": "gen_modules/backreferences",
    "doc_module": ("torchvision",),
63
64
}

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
65
napoleon_use_ivar = True
66
67
napoleon_numpy_docstring = False
napoleon_google_docstring = True
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
68

69

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
70
# Add any paths that contain templates here, relative to this directory.
71
templates_path = ["_templates"]
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
72
73
74
75

# The suffix(es) of source filenames.
# You can specify multiple suffix as a list of string:
#
76
source_suffix = {
77
    ".rst": "restructuredtext",
78
}
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
79
80

# The master toctree document.
81
master_doc = "index"
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
82
83

# General information about the project.
84
85
86
project = "Torchvision"
copyright = "2017-present, Torch Contributors"
author = "Torch Contributors"
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
87
88
89
90
91
92

# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
#
# The short X.Y version.
93
version = "main (" + torchvision.__version__ + " )"
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
94
# The full version, including alpha/beta/rc tags.
95
release = "main"
96
97
98
99
100
101
102
VERSION = os.environ.get("VERSION", None)
if VERSION:
    # Turn 1.11.0aHASH into 1.11 (major.minor only)
    version = ".".join(version.split(".")[:2])
    html_title = " ".join((project, version, "documentation"))
    release = version

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
103
104
105
106
107
108

# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
109
language = "en"
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
110
111
112
113
114
115
116

# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This patterns also effect to html_static_path and html_extra_path
exclude_patterns = []

# The name of the Pygments (syntax highlighting) style to use.
117
pygments_style = "sphinx"
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
118
119
120
121
122
123
124
125
126
127

# If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = True


# -- Options for HTML output ----------------------------------------------

# The theme to use for HTML and HTML Help pages.  See the documentation for
# a list of builtin themes.
#
128
html_theme = "pytorch_sphinx_theme"
Brian Johnson's avatar
Brian Johnson committed
129
html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()]
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
130
131
132
133
134
135

# Theme options are theme-specific and customize the look and feel of a theme
# further.  For a list of options available for each theme, see the
# documentation.
#
html_theme_options = {
136
137
138
139
140
141
    "collapse_navigation": False,
    "display_version": True,
    "logo_only": True,
    "pytorch_project": "docs",
    "navigation_with_keys": True,
    "analytics_id": "UA-117752657-2",
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
142
143
}

144
html_logo = "_static/img/pytorch-logo-dark.svg"
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
145
146
147
148

# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
149
html_static_path = ["_static"]
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
150

151
152
# TODO: remove this once https://github.com/pytorch/pytorch_sphinx_theme/issues/125 is fixed
html_css_files = [
153
    "css/custom_torchvision.css",
154
155
]

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
156
157
158
# -- Options for HTMLHelp output ------------------------------------------

# Output file base name for HTML help builder.
159
htmlhelp_basename = "PyTorchdoc"
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
160
161


162
163
164
autosummary_generate = True


Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# -- Options for LaTeX output ---------------------------------------------
latex_elements = {
    # The paper size ('letterpaper' or 'a4paper').
    #
    # 'papersize': 'letterpaper',
    # The font size ('10pt', '11pt' or '12pt').
    #
    # 'pointsize': '10pt',
    # Additional stuff for the LaTeX preamble.
    #
    # 'preamble': '',
    # Latex figure (float) alignment
    #
    # 'figure_align': 'htbp',
}

181

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
182
183
184
185
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
#  author, documentclass [howto, manual, or own class]).
latex_documents = [
186
    (master_doc, "pytorch.tex", "torchvision Documentation", "Torch Contributors", "manual"),
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
187
188
189
190
191
192
193
]


# -- Options for manual page output ---------------------------------------

# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
194
man_pages = [(master_doc, "torchvision", "torchvision Documentation", [author], 1)]
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
195
196
197
198
199
200
201
202


# -- Options for Texinfo output -------------------------------------------

# Grouping the document tree into Texinfo files. List of tuples
# (source start file, target name, title, author,
#  dir menu entry, description, category)
texinfo_documents = [
203
204
205
206
207
208
209
210
211
    (
        master_doc,
        "torchvision",
        "torchvision Documentation",
        author,
        "torchvision",
        "One line description of project.",
        "Miscellaneous",
    ),
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
212
213
214
215
216
]


# Example configuration for intersphinx: refer to the Python standard library.
intersphinx_mapping = {
217
    "python": ("https://docs.python.org/3/", None),
218
    "torch": ("https://pytorch.org/docs/stable/", None),
219
    "numpy": ("https://numpy.org/doc/stable/", None),
220
221
    "PIL": ("https://pillow.readthedocs.io/en/stable/", None),
    "matplotlib": ("https://matplotlib.org/stable/", None),
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
222
223
224
225
226
227
228
}

# -- A patch that prevents Sphinx from cross-referencing ivar tags -------
# See http://stackoverflow.com/a/41184353/3343043

from docutils import nodes
from sphinx import addnodes
229
from sphinx.util.docfields import TypedField
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
230
231
232
233
234
235


def patched_make_field(self, types, domain, items, **kw):
    # `kw` catches `env=None` needed for newer sphinx while maintaining
    #  backwards compatibility when passed along further down!

eellison's avatar
eellison committed
236
    # type: (list, unicode, tuple) -> nodes.field  # noqa: F821
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
237
238
    def handle_item(fieldarg, content):
        par = nodes.paragraph()
239
        par += addnodes.literal_strong("", fieldarg)  # Patch: this line added
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
240
241
242
        # par.extend(self.make_xrefs(self.rolename, domain, fieldarg,
        #                           addnodes.literal_strong))
        if fieldarg in types:
243
            par += nodes.Text(" (")
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
244
245
246
247
248
            # NOTE: using .pop() here to prevent a single type node to be
            # inserted twice into the doctree, which leads to
            # inconsistencies later when references are resolved
            fieldtype = types.pop(fieldarg)
            if len(fieldtype) == 1 and isinstance(fieldtype[0], nodes.Text):
249
250
251
252
253
254
                typename = "".join(n.astext() for n in fieldtype)
                typename = typename.replace("int", "python:int")
                typename = typename.replace("long", "python:long")
                typename = typename.replace("float", "python:float")
                typename = typename.replace("type", "python:type")
                par.extend(self.make_xrefs(self.typerolename, domain, typename, addnodes.literal_emphasis, **kw))
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
255
256
            else:
                par += fieldtype
257
258
            par += nodes.Text(")")
        par += nodes.Text(" -- ")
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
259
260
261
        par += content
        return par

262
    fieldname = nodes.field_name("", self.label)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
263
264
265
266
267
268
    if len(items) == 1 and self.can_collapse:
        fieldarg, content = items[0]
        bodynode = handle_item(fieldarg, content)
    else:
        bodynode = self.list_type()
        for fieldarg, content in items:
269
270
271
            bodynode += nodes.list_item("", handle_item(fieldarg, content))
    fieldbody = nodes.field_body("", bodynode)
    return nodes.field("", fieldname, fieldbody)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
272

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
273

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
274
TypedField.make_field = patched_make_field
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302


def inject_minigalleries(app, what, name, obj, options, lines):
    """Inject a minigallery into a docstring.

    This avoids having to manually write the .. minigallery directive for every item we want a minigallery for,
    as it would be easy to miss some.

    This callback is called after the .. auto directives (like ..autoclass) have been processed,
    and modifies the lines parameter inplace to add the .. minigallery that will show which examples
    are using which object.

    It's a bit hacky, but not *that* hacky when you consider that the recommended way is to do pretty much the same,
    but instead with templates using autosummary (which we don't want to use):
    (https://sphinx-gallery.github.io/stable/configuration.html#auto-documenting-your-api-with-links-to-examples)

    For docs on autodoc-process-docstring, see the autodoc docs:
    https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
    """

    if what in ("class", "function"):
        lines.append(f".. minigallery:: {name}")
        lines.append(f"    :add-heading: Examples using ``{name.split('.')[-1]}``:")
        # avoid heading entirely to avoid warning. As a bonud it actually renders better
        lines.append("    :heading-level: 9")
        lines.append("\n")


303
def inject_weight_metadata(app, what, name, obj, options, lines):
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    """This hook is used to generate docs for the models weights.

    Objects like ResNet18_Weights are enums with fields, where each field is a Weight object.
    Enums aren't easily documented in Python so the solution we're going for is to:

    - add an autoclass directive in the model's builder docstring, e.g.

    ```
    .. autoclass:: torchvision.models.ResNet34_Weights
        :members:
    ```

    (see resnet.py for an example)
    - then this hook is called automatically when building the docs, and it generates the text that gets
      used within the autoclass directive.
    """
320

321
    if obj.__name__.endswith(("_Weights", "_QuantizedWeights")):
322
323
324
325
326

        if len(obj) == 0:
            lines[:] = ["There are no available pre-trained weights."]
            return

327
328
        lines[:] = [
            "The model builder above accepts the following values as the ``weights`` parameter.",
329
330
            f"``{obj.__name__}.DEFAULT`` is equivalent to ``{obj.DEFAULT}``. You can also use strings, e.g. "
            f"``weights='DEFAULT'`` or ``weights='{str(list(obj)[0]).split('.')[1]}'``.",
331
        ]
332
333
334
335
336
337

        if obj.__doc__ != "An enumeration.":
            # We only show the custom enum doc if it was overriden. The default one from Python is "An enumeration"
            lines.append("")
            lines.append(obj.__doc__)

338
        lines.append("")
339

340
        for field in obj:
341
            meta = copy(field.meta)
342

343
344
            lines += [f"**{str(field)}**:", ""]
            lines += [meta.pop("_docs")]
345
346
347
348

            if field == obj.DEFAULT:
                lines += [f"Also available as ``{obj.__name__}.DEFAULT``."]
            lines += [""]
349

350
351
352
353
354
355
356
            table = []
            metrics = meta.pop("_metrics")
            for dataset, dataset_metrics in metrics.items():
                for metric_name, metric_value in dataset_metrics.items():
                    table.append((f"{metric_name} (on {dataset})", str(metric_value)))

            for k, v in meta.items():
357
                if k in {"recipe", "license"}:
358
                    v = f"`link <{v}>`__"
359
360
                elif k == "min_size":
                    v = f"height={v[0]}, width={v[1]}"
361
362
363
364
                elif k in {"categories", "keypoint_names"} and isinstance(v, list):
                    max_visible = 3
                    v_sample = ", ".join(v[:max_visible])
                    v = f"{v_sample}, ... ({len(v)-max_visible} omitted)" if len(v) > max_visible else v_sample
365
366
367
368
369
370
371
372
                elif k == "_ops":
                    if obj.__name__.endswith("_QuantizedWeights"):
                        v = f"{v} giga instructions per sec"
                    else:
                        v = f"{v} giga floating-point operations per sec"
                elif k == "_weight_size":
                    v = f"{v} MB (file size)"

373
374
                table.append((str(k), str(v)))
            table = tabulate(table, tablefmt="rst")
375
            lines += [".. rst-class:: table-weights"]  # Custom CSS class, see custom_torchvision.css
376
377
378
            lines += [".. table::", ""]
            lines += textwrap.indent(table, " " * 4).split("\n")
            lines.append("")
379
            lines.append(
380
381
                f"The inference transforms are available at ``{str(field)}.transforms`` and "
                f"perform the following preprocessing operations: {field.transforms().describe()}"
382
383
            )
            lines.append("")
384
385


386
def generate_weights_table(module, table_name, metrics, dataset, include_patterns=None, exclude_patterns=None):
387
388
    weights_endswith = "_QuantizedWeights" if module.__name__.split(".")[-1] == "quantization" else "_Weights"
    weight_enums = [getattr(module, name) for name in dir(module) if name.endswith(weights_endswith)]
389
390
    weights = [w for weight_enum in weight_enums for w in weight_enum]

391
392
393
394
    if include_patterns is not None:
        weights = [w for w in weights if any(p in str(w) for p in include_patterns)]
    if exclude_patterns is not None:
        weights = [w for w in weights if all(p not in str(w) for p in exclude_patterns)]
395

396
397
    ops_name = "GIPS" if "QuantizedWeights" in weights_endswith else "GFLOPS"

398
    metrics_keys, metrics_names = zip(*metrics)
399
400
401
    column_names = (
        ["Weight"] + list(metrics_names) + ["Params"] + [ops_name, "Size (MB)", "Recipe"]
    )  # Final column order
402
403
    column_names = [f"**{name}**" for name in column_names]  # Add bold

404
405
406
    content = []
    for w in weights:
        row = [
407
            f":class:`{w} <{type(w).__name__}>`",
408
            *(w.meta["_metrics"][dataset][metric] for metric in metrics_keys),
409
            f"{w.meta['num_params']/1e6:.1f}M",
410
411
            f"{w.meta['_ops']:.3f}",
            f"{round(w.meta['_weight_size'], 1):.1f}",
412
            f"`link <{w.meta['recipe']}>`__",
413
414
415
416
417
418
419
        ]

        content.append(row)

    column_widths = ["110"] + ["18"] * len(metrics_names) + ["18"] * 3 + ["10"]
    widths_table = " ".join(column_widths)

420
421
422
423
    table = tabulate(content, headers=column_names, tablefmt="rst")

    generated_dir = Path("generated")
    generated_dir.mkdir(exist_ok=True)
424
    with open(generated_dir / f"{table_name}_table.rst", "w+") as table_file:
425
        table_file.write(".. rst-class:: table-weights\n")  # Custom CSS class, see custom_torchvision.css
426
        table_file.write(".. table::\n")
427
        table_file.write(f"    :widths: {widths_table} \n\n")
428
429
430
        table_file.write(f"{textwrap.indent(table, ' ' * 4)}\n\n")


431
generate_weights_table(
432
433
434
435
436
437
438
    module=M, table_name="classification", metrics=[("acc@1", "Acc@1"), ("acc@5", "Acc@5")], dataset="ImageNet-1K"
)
generate_weights_table(
    module=M.quantization,
    table_name="classification_quant",
    metrics=[("acc@1", "Acc@1"), ("acc@5", "Acc@5")],
    dataset="ImageNet-1K",
439
)
440
generate_weights_table(
441
442
443
444
445
    module=M.detection,
    table_name="detection",
    metrics=[("box_map", "Box MAP")],
    exclude_patterns=["Mask", "Keypoint"],
    dataset="COCO-val2017",
446
447
448
449
450
)
generate_weights_table(
    module=M.detection,
    table_name="instance_segmentation",
    metrics=[("box_map", "Box MAP"), ("mask_map", "Mask MAP")],
451
    dataset="COCO-val2017",
452
    include_patterns=["Mask"],
453
454
455
456
457
)
generate_weights_table(
    module=M.detection,
    table_name="detection_keypoint",
    metrics=[("box_map", "Box MAP"), ("kp_map", "Keypoint MAP")],
458
    dataset="COCO-val2017",
459
    include_patterns=["Keypoint"],
460
)
461
generate_weights_table(
462
463
464
465
466
467
468
    module=M.segmentation,
    table_name="segmentation",
    metrics=[("miou", "Mean IoU"), ("pixel_acc", "pixelwise Acc")],
    dataset="COCO-val2017-VOC-labels",
)
generate_weights_table(
    module=M.video, table_name="video", metrics=[("acc@1", "Acc@1"), ("acc@5", "Acc@5")], dataset="Kinetics-400"
469
)
470
471


472
def setup(app):
473

474
    app.connect("autodoc-process-docstring", inject_minigalleries)
475
    app.connect("autodoc-process-docstring", inject_weight_metadata)