train.py 11.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
import datetime
import os
import time

import torch
import torch.utils.data
from torch import nn
import torchvision
from torchvision import transforms

import utils

13
14
15
16
try:
    from apex import amp
except ImportError:
    amp = None
17

18
19

def train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, print_freq, apex=False):
20
21
22
    model.train()
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
23
24
    metric_logger.add_meter('img/s', utils.SmoothedValue(window_size=10, fmt='{value}'))

25
26
    header = 'Epoch: [{}]'.format(epoch)
    for image, target in metric_logger.log_every(data_loader, print_freq, header):
27
        start_time = time.time()
28
29
30
31
32
        image, target = image.to(device), target.to(device)
        output = model(image)
        loss = criterion(output, target)

        optimizer.zero_grad()
33
34
35
36
37
        if apex:
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()
38
39
40
41
42
43
44
        optimizer.step()

        acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
        batch_size = image.shape[0]
        metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
        metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
        metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
45
        metric_logger.meters['img/s'].update(batch_size / (time.time() - start_time))
46
47


48
def evaluate(model, criterion, data_loader, device, print_freq=100):
49
50
51
52
    model.eval()
    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Test:'
    with torch.no_grad():
53
        for image, target in metric_logger.log_every(data_loader, print_freq, header):
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
            image = image.to(device, non_blocking=True)
            target = target.to(device, non_blocking=True)
            output = model(image)
            loss = criterion(output, target)

            acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
            # FIXME need to take into account that the datasets
            # could have been padded in distributed setup
            batch_size = image.shape[0]
            metric_logger.update(loss=loss.item())
            metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
            metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
    # gather the stats from all processes
    metric_logger.synchronize_between_processes()

    print(' * Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}'
          .format(top1=metric_logger.acc1, top5=metric_logger.acc5))
    return metric_logger.acc1.global_avg


74
75
76
77
78
79
80
81
def _get_cache_path(filepath):
    import hashlib
    h = hashlib.sha1(filepath.encode()).hexdigest()
    cache_path = os.path.join("~", ".torch", "vision", "datasets", "imagefolder", h[:10] + ".pt")
    cache_path = os.path.expanduser(cache_path)
    return cache_path


82
def load_data(traindir, valdir, cache_dataset, distributed):
83
84
85
86
87
88
89
    # Data loading code
    print("Loading data")
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    print("Loading training data")
    st = time.time()
90
    cache_path = _get_cache_path(traindir)
91
    if cache_dataset and os.path.exists(cache_path):
92
93
94
95
96
97
98
99
100
101
102
103
        # Attention, as the transforms are also cached!
        print("Loading dataset_train from {}".format(cache_path))
        dataset, _ = torch.load(cache_path)
    else:
        dataset = torchvision.datasets.ImageFolder(
            traindir,
            transforms.Compose([
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ]))
104
        if cache_dataset:
105
106
107
            print("Saving dataset_train to {}".format(cache_path))
            utils.mkdir(os.path.dirname(cache_path))
            utils.save_on_master((dataset, traindir), cache_path)
108
109
110
    print("Took", time.time() - st)

    print("Loading validation data")
111
    cache_path = _get_cache_path(valdir)
112
    if cache_dataset and os.path.exists(cache_path):
113
114
115
116
117
118
119
120
121
122
123
124
        # Attention, as the transforms are also cached!
        print("Loading dataset_test from {}".format(cache_path))
        dataset_test, _ = torch.load(cache_path)
    else:
        dataset_test = torchvision.datasets.ImageFolder(
            valdir,
            transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ]))
125
        if cache_dataset:
126
127
128
            print("Saving dataset_test to {}".format(cache_path))
            utils.mkdir(os.path.dirname(cache_path))
            utils.save_on_master((dataset_test, valdir), cache_path)
129
130

    print("Creating data loaders")
131
    if distributed:
132
133
134
135
136
137
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

138
139
140
141
    return dataset, dataset_test, train_sampler, test_sampler


def main(args):
142
143
144
    if args.apex and amp is None:
        raise RuntimeError("Failed to import apex. Please install apex from https://www.github.com/nvidia/apex "
                           "to enable mixed-precision training.")
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

    if args.output_dir:
        utils.mkdir(args.output_dir)

    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

    torch.backends.cudnn.benchmark = True

    train_dir = os.path.join(args.data_path, 'train')
    val_dir = os.path.join(args.data_path, 'val')
    dataset, dataset_test, train_sampler, test_sampler = load_data(train_dir, val_dir,
                                                                   args.cache_dataset, args.distributed)
160
161
162
163
164
165
166
167
168
    data_loader = torch.utils.data.DataLoader(
        dataset, batch_size=args.batch_size,
        sampler=train_sampler, num_workers=args.workers, pin_memory=True)

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test, batch_size=args.batch_size,
        sampler=test_sampler, num_workers=args.workers, pin_memory=True)

    print("Creating model")
169
    model = torchvision.models.__dict__[args.model](pretrained=args.pretrained)
170
    model.to(device)
171
    if args.distributed and args.sync_bn:
Francisco Massa's avatar
Francisco Massa committed
172
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
173
174
175
176
177
178

    criterion = nn.CrossEntropyLoss()

    optimizer = torch.optim.SGD(
        model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)

179
180
181
182
183
    if args.apex:
        model, optimizer = amp.initialize(model, optimizer,
                                          opt_level=args.apex_opt_level
                                          )

184
185
186
187
188
189
190
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

191
192
193
194
195
    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
196
        args.start_epoch = checkpoint['epoch'] + 1
197
198
199
200
201
202
203

    if args.test_only:
        evaluate(model, criterion, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
204
    for epoch in range(args.start_epoch, args.epochs):
205
206
        if args.distributed:
            train_sampler.set_epoch(epoch)
207
        train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args.print_freq, args.apex)
Francisco Massa's avatar
Francisco Massa committed
208
        lr_scheduler.step()
209
210
        evaluate(model, criterion, data_loader_test, device=device)
        if args.output_dir:
211
            checkpoint = {
212
213
214
                'model': model_without_ddp.state_dict(),
                'optimizer': optimizer.state_dict(),
                'lr_scheduler': lr_scheduler.state_dict(),
215
216
217
218
                'epoch': epoch,
                'args': args}
            utils.save_on_master(
                checkpoint,
219
                os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))
220
221
222
            utils.save_on_master(
                checkpoint,
                os.path.join(args.output_dir, 'checkpoint.pth'))
223
224
225
226
227
228

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))


229
def parse_args():
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    import argparse
    parser = argparse.ArgumentParser(description='PyTorch Classification Training')

    parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', help='dataset')
    parser.add_argument('--model', default='resnet18', help='model')
    parser.add_argument('--device', default='cuda', help='device')
    parser.add_argument('-b', '--batch-size', default=32, type=int)
    parser.add_argument('--epochs', default=90, type=int, metavar='N',
                        help='number of total epochs to run')
    parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
                        help='number of data loading workers (default: 16)')
    parser.add_argument('--lr', default=0.1, type=float, help='initial learning rate')
    parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                        help='momentum')
    parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
                        metavar='W', help='weight decay (default: 1e-4)',
                        dest='weight_decay')
    parser.add_argument('--lr-step-size', default=30, type=int, help='decrease lr every step-size epochs')
    parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma')
    parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
    parser.add_argument('--output-dir', default='.', help='path where to save')
    parser.add_argument('--resume', default='', help='resume from checkpoint')
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                        help='start epoch')
    parser.add_argument(
        "--cache-dataset",
        dest="cache_dataset",
        help="Cache the datasets for quicker initialization. It also serializes the transforms",
        action="store_true",
    )
    parser.add_argument(
        "--sync-bn",
        dest="sync_bn",
        help="Use sync batch norm",
        action="store_true",
    )
266
267
268
269
270
271
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )
272
273
274
275
276
277
    parser.add_argument(
        "--pretrained",
        dest="pretrained",
        help="Use pre-trained models from the modelzoo",
        action="store_true",
    )
278

279
280
281
282
283
284
285
286
287
    # Mixed precision training parameters
    parser.add_argument('--apex', action='store_true',
                        help='Use apex for mixed precision training')
    parser.add_argument('--apex-opt-level', default='O1', type=str,
                        help='For apex mixed precision training'
                             'O0 for FP32 training, O1 for mixed precision training.'
                             'For further detail, see https://github.com/NVIDIA/apex/tree/master/examples/imagenet'
                        )

288
289
290
291
    # distributed training parameters
    parser.add_argument('--world-size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
292
293
294

    args = parser.parse_args()

295
    return args
296

297
298
299

if __name__ == "__main__":
    args = parse_args()
300
    main(args)