plot_transforms.py 11 KB
Newer Older
1
2
3
4
5
"""
==========================
Illustration of transforms
==========================

6
7
This example illustrates the various transforms available in :ref:`the
torchvision.transforms module <transforms>`.
8
9
"""

10
11
# sphinx_gallery_thumbnail_path = "../../gallery/assets/transforms_thumbnail.png"

12
13
14
15
16
from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np

17
import torch
18
19
20
import torchvision.transforms as T


21
plt.rcParams["savefig.bbox"] = 'tight'
22
orig_img = Image.open(Path('assets') / 'astronaut.jpg')
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# if you change the seed, make sure that the randomly-applied transforms
# properly show that the image can be both transformed and *not* transformed!
torch.manual_seed(0)


def plot(imgs, with_orig=True, row_title=None, **imshow_kwargs):
    if not isinstance(imgs[0], list):
        # Make a 2d grid even if there's just 1 row
        imgs = [imgs]

    num_rows = len(imgs)
    num_cols = len(imgs[0]) + with_orig
    fig, axs = plt.subplots(nrows=num_rows, ncols=num_cols, squeeze=False)
    for row_idx, row in enumerate(imgs):
        row = [orig_img] + row if with_orig else row
        for col_idx, img in enumerate(row):
            ax = axs[row_idx, col_idx]
            ax.imshow(np.asarray(img), **imshow_kwargs)
            ax.set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])
42
43

    if with_orig:
44
45
46
47
48
49
50
        axs[0, 0].set(title='Original image')
        axs[0, 0].title.set_size(8)
    if row_title is not None:
        for row_idx in range(num_rows):
            axs[row_idx, 0].set(ylabel=row_title[row_idx])

    plt.tight_layout()
51
52
53
54
55
56
57
58


####################################
# Pad
# ---
# The :class:`~torchvision.transforms.Pad` transform
# (see also :func:`~torchvision.transforms.functional.pad`)
# fills image borders with some pixel values.
59
60
padded_imgs = [T.Pad(padding=padding)(orig_img) for padding in (3, 10, 30, 50)]
plot(padded_imgs)
61
62
63
64
65
66
67

####################################
# Resize
# ------
# The :class:`~torchvision.transforms.Resize` transform
# (see also :func:`~torchvision.transforms.functional.resize`)
# resizes an image.
68
69
resized_imgs = [T.Resize(size=size)(orig_img) for size in (30, 50, 100, orig_img.size)]
plot(resized_imgs)
70
71
72
73
74
75
76

####################################
# CenterCrop
# ----------
# The :class:`~torchvision.transforms.CenterCrop` transform
# (see also :func:`~torchvision.transforms.functional.center_crop`)
# crops the given image at the center.
77
78
center_crops = [T.CenterCrop(size=size)(orig_img) for size in (30, 50, 100, orig_img.size)]
plot(center_crops)
79
80
81
82
83
84
85

####################################
# FiveCrop
# --------
# The :class:`~torchvision.transforms.FiveCrop` transform
# (see also :func:`~torchvision.transforms.functional.five_crop`)
# crops the given image into four corners and the central crop.
86
87
(top_left, top_right, bottom_left, bottom_right, center) = T.FiveCrop(size=(100, 100))(orig_img)
plot([top_left, top_right, bottom_left, bottom_right, center])
88
89
90
91
92
93
94
95

####################################
# Grayscale
# ---------
# The :class:`~torchvision.transforms.Grayscale` transform
# (see also :func:`~torchvision.transforms.functional.to_grayscale`)
# converts an image to grayscale
gray_img = T.Grayscale()(orig_img)
96
plot([gray_img], cmap='gray')
97
98

####################################
99
# Random transforms
100
# -----------------
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# The following transforms are random, which means that the same transfomer
# instance will produce different result each time it transforms a given image.
#
# ColorJitter
# ~~~~~~~~~~~
# The :class:`~torchvision.transforms.ColorJitter` transform
# randomly changes the brightness, saturation, and other properties of an image.
jitter = T.ColorJitter(brightness=.5, hue=.3)
jitted_imgs = [jitter(orig_img) for _ in range(4)]
plot(jitted_imgs)

####################################
# GaussianBlur
# ~~~~~~~~~~~~
# The :class:`~torchvision.transforms.GaussianBlur` transform
# (see also :func:`~torchvision.transforms.functional.gaussian_blur`)
# performs gaussian blur transform on an image.
blurrer = T.GaussianBlur(kernel_size=(5, 9), sigma=(0.1, 5))
blurred_imgs = [blurrer(orig_img) for _ in range(4)]
plot(blurred_imgs)

####################################
# RandomPerspective
# ~~~~~~~~~~~~~~~~~
125
126
127
# The :class:`~torchvision.transforms.RandomPerspective` transform
# (see also :func:`~torchvision.transforms.functional.perspective`)
# performs random perspective transform on an image.
128
129
130
perspective_transformer = T.RandomPerspective(distortion_scale=0.6, p=1.0)
perspective_imgs = [perspective_transformer(orig_img) for _ in range(4)]
plot(perspective_imgs)
131
132
133

####################################
# RandomRotation
134
# ~~~~~~~~~~~~~~
135
136
137
# The :class:`~torchvision.transforms.RandomRotation` transform
# (see also :func:`~torchvision.transforms.functional.rotate`)
# rotates an image with random angle.
138
139
140
rotater = T.RandomRotation(degrees=(0, 180))
rotated_imgs = [rotater(orig_img) for _ in range(4)]
plot(rotated_imgs)
141
142
143

####################################
# RandomAffine
144
# ~~~~~~~~~~~~
145
146
147
# The :class:`~torchvision.transforms.RandomAffine` transform
# (see also :func:`~torchvision.transforms.functional.affine`)
# performs random affine transform on an image.
148
149
150
affine_transfomer = T.RandomAffine(degrees=(30, 70), translate=(0.1, 0.3), scale=(0.5, 0.75))
affine_imgs = [affine_transfomer(orig_img) for _ in range(4)]
plot(affine_imgs)
151
152
153

####################################
# RandomCrop
154
# ~~~~~~~~~~
155
156
157
# The :class:`~torchvision.transforms.RandomCrop` transform
# (see also :func:`~torchvision.transforms.functional.crop`)
# crops an image at a random location.
158
159
160
cropper = T.RandomCrop(size=(128, 128))
crops = [cropper(orig_img) for _ in range(4)]
plot(crops)
161
162
163

####################################
# RandomResizedCrop
164
# ~~~~~~~~~~~~~~~~~
165
166
167
168
# The :class:`~torchvision.transforms.RandomResizedCrop` transform
# (see also :func:`~torchvision.transforms.functional.resized_crop`)
# crops an image at a random location, and then resizes the crop to a given
# size.
169
170
171
resize_cropper = T.RandomResizedCrop(size=(32, 32))
resized_crops = [resize_cropper(orig_img) for _ in range(4)]
plot(resized_crops)
172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
####################################
# RandomInvert
# ~~~~~~~~~~~~
# The :class:`~torchvision.transforms.RandomInvert` transform
# (see also :func:`~torchvision.transforms.functional.invert`)
# randomly inverts the colors of the given image.
inverter = T.RandomInvert()
invertered_imgs = [inverter(orig_img) for _ in range(4)]
plot(invertered_imgs)

####################################
# RandomPosterize
# ~~~~~~~~~~~~~~~
# The :class:`~torchvision.transforms.RandomPosterize` transform
# (see also :func:`~torchvision.transforms.functional.posterize`)
# randomly posterizes the image by reducing the number of bits
# of each color channel.
posterizer = T.RandomPosterize(bits=2)
posterized_imgs = [posterizer(orig_img) for _ in range(4)]
plot(posterized_imgs)

####################################
# RandomSolarize
# ~~~~~~~~~~~~~~
# The :class:`~torchvision.transforms.RandomSolarize` transform
# (see also :func:`~torchvision.transforms.functional.solarize`)
# randomly solarizes the image by inverting all pixel values above
# the threshold.
solarizer = T.RandomSolarize(threshold=192.0)
solarized_imgs = [solarizer(orig_img) for _ in range(4)]
plot(solarized_imgs)

####################################
# RandomAdjustSharpness
# ~~~~~~~~~~~~~~~~~~~~~
# The :class:`~torchvision.transforms.RandomAdjustSharpness` transform
# (see also :func:`~torchvision.transforms.functional.adjust_sharpness`)
# randomly adjusts the sharpness of the given image.
sharpness_adjuster = T.RandomAdjustSharpness(sharpness_factor=2)
sharpened_imgs = [sharpness_adjuster(orig_img) for _ in range(4)]
plot(sharpened_imgs)

####################################
# RandomAutocontrast
# ~~~~~~~~~~~~~~~~~~
# The :class:`~torchvision.transforms.RandomAutocontrast` transform
# (see also :func:`~torchvision.transforms.functional.autocontrast`)
# randomly applies autocontrast to the given image.
autocontraster = T.RandomAutocontrast()
autocontrasted_imgs = [autocontraster(orig_img) for _ in range(4)]
plot(autocontrasted_imgs)

####################################
# RandomEqualize
# ~~~~~~~~~~~~~~
# The :class:`~torchvision.transforms.RandomEqualize` transform
# (see also :func:`~torchvision.transforms.functional.equalize`)
# randomly equalizes the histogram of the given image.
equalizer = T.RandomEqualize()
equalized_imgs = [equalizer(orig_img) for _ in range(4)]
plot(equalized_imgs)

235
####################################
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# AutoAugment
# ~~~~~~~~~~~
# The :class:`~torchvision.transforms.AutoAugment` transform
# automatically augments data based on a given auto-augmentation policy.
# See :class:`~torchvision.transforms.AutoAugmentPolicy` for the available policies.
policies = [T.AutoAugmentPolicy.CIFAR10, T.AutoAugmentPolicy.IMAGENET, T.AutoAugmentPolicy.SVHN]
augmenters = [T.AutoAugment(policy) for policy in policies]
imgs = [
    [augmenter(orig_img) for _ in range(4)]
    for augmenter in augmenters
]
row_title = [str(policy).split('.')[-1] for policy in policies]
plot(imgs, row_title=row_title)

250
251
252
253
254
255
256
257
####################################
# RandAugment
# ~~~~~~~~~~~
# The :class:`~torchvision.transforms.RandAugment` transform automatically augments the data.
augmenter = T.RandAugment()
imgs = [augmenter(orig_img) for _ in range(4)]
plot(imgs)

258
259
260
261
262
263
264
265
####################################
# TrivialAugmentWide
# ~~~~~~~~~~~~~~~~~~
# The :class:`~torchvision.transforms.TrivialAugmentWide` transform automatically augments the data.
augmenter = T.TrivialAugmentWide()
imgs = [augmenter(orig_img) for _ in range(4)]
plot(imgs)

266
267
268
269
270
271
272
273
####################################
# AugMix
# ~~~~~~
# The :class:`~torchvision.transforms.AugMix` transform automatically augments the data.
augmenter = T.AugMix()
imgs = [augmenter(orig_img) for _ in range(4)]
plot(imgs)

274
275
276
277
278
279
280
281
####################################
# Randomly-applied transforms
# ---------------------------
#
# Some transforms are randomly-applied given a probability ``p``.  That is, the
# transformed image may actually be the same as the original one, even when
# called with the same transformer instance!
#
282
# RandomHorizontalFlip
283
# ~~~~~~~~~~~~~~~~~~~~
284
285
286
# The :class:`~torchvision.transforms.RandomHorizontalFlip` transform
# (see also :func:`~torchvision.transforms.functional.hflip`)
# performs horizontal flip of an image, with a given probability.
287
288
289
hflipper = T.RandomHorizontalFlip(p=0.5)
transformed_imgs = [hflipper(orig_img) for _ in range(4)]
plot(transformed_imgs)
290
291
292

####################################
# RandomVerticalFlip
293
# ~~~~~~~~~~~~~~~~~~
294
295
296
# The :class:`~torchvision.transforms.RandomVerticalFlip` transform
# (see also :func:`~torchvision.transforms.functional.vflip`)
# performs vertical flip of an image, with a given probability.
297
298
299
vflipper = T.RandomVerticalFlip(p=0.5)
transformed_imgs = [vflipper(orig_img) for _ in range(4)]
plot(transformed_imgs)
300
301
302

####################################
# RandomApply
303
# ~~~~~~~~~~~
304
# The :class:`~torchvision.transforms.RandomApply` transform
305
306
307
308
# randomly applies a list of transforms, with a given probability.
applier = T.RandomApply(transforms=[T.RandomCrop(size=(64, 64))], p=0.5)
transformed_imgs = [applier(orig_img) for _ in range(4)]
plot(transformed_imgs)