functional.py 35.2 KB
Newer Older
1
import math
2
3
4
5
6
7
import numbers
import warnings
from collections.abc import Iterable

import numpy as np
from numpy import sin, cos, tan
8
from PIL import Image, ImageOps, ImageEnhance, __version__ as PILLOW_VERSION
9
10
11
12
13

import torch
from torch import Tensor
from torch.jit.annotations import List

14
15
16
17
18
try:
    import accimage
except ImportError:
    accimage = None

19
20
21
from . import functional_pil as F_pil
from . import functional_tensor as F_t

22
23
24
25
26
27
28
29

def _is_pil_image(img):
    if accimage is not None:
        return isinstance(img, (Image.Image, accimage.Image))
    else:
        return isinstance(img, Image.Image)


30
31
32
33
def _is_numpy(img):
    return isinstance(img, np.ndarray)


34
def _is_numpy_image(img):
35
    return img.ndim in {2, 3}
36
37
38
39
40
41
42
43
44
45
46
47
48


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    See ``ToTensor`` for more details.

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
49
    if not(_is_pil_image(pic) or _is_numpy(pic)):
50
51
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

52
53
54
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

55
56
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
57
58
59
        if pic.ndim == 2:
            pic = pic[:, :, None]

60
61
        img = torch.from_numpy(pic.transpose((2, 0, 1)))
        # backward compatibility
62
63
64
65
        if isinstance(img, torch.ByteTensor):
            return img.float().div(255)
        else:
            return img
66
67
68
69
70
71
72
73
74
75
76

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
        pic.copyto(nppic)
        return torch.from_numpy(nppic)

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
77
78
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
79
80
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
81
82
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
83
84

    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
85
    # put it from HWC to CHW format
86
    img = img.permute((2, 0, 1)).contiguous()
87
88
89
90
91
92
    if isinstance(img, torch.ByteTensor):
        return img.float().div(255)
    else:
        return img


93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
def pil_to_tensor(pic):
    """Convert a ``PIL Image`` to a tensor of the same type.

    See ``AsTensor`` for more details.

    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
    if not(_is_pil_image(pic)):
        raise TypeError('pic should be PIL Image. Got {}'.format(type(pic)))

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
    img = torch.as_tensor(np.asarray(pic))
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
        (torch.Tensor): Converted image

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
    if image.dtype == dtype:
        return image

    if image.dtype.is_floating_point:
        # float to float
        if dtype.is_floating_point:
            return image.to(dtype)

        # float to int
        if (image.dtype == torch.float32 and dtype in (torch.int32, torch.int64)) or (
            image.dtype == torch.float64 and dtype == torch.int64
        ):
            msg = f"The cast from {image.dtype} to {dtype} cannot be performed safely."
            raise RuntimeError(msg)

        eps = 1e-3
        return image.mul(torch.iinfo(dtype).max + 1 - eps).to(dtype)
    else:
        # int to float
        if dtype.is_floating_point:
            max = torch.iinfo(image.dtype).max
            image = image.to(dtype)
            return image / max

        # int to int
        input_max = torch.iinfo(image.dtype).max
        output_max = torch.iinfo(dtype).max

        if input_max > output_max:
            factor = (input_max + 1) // (output_max + 1)
            image = image // factor
            return image.to(dtype)
        else:
            factor = (output_max + 1) // (input_max + 1)
            image = image.to(dtype)
            return image * factor


179
180
181
def to_pil_image(pic, mode=None):
    """Convert a tensor or an ndarray to PIL Image.

182
    See :class:`~torchvision.transforms.ToPILImage` for more details.
183
184
185
186
187

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

188
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
189
190
191
192

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
193
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
194
195
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
196
197
198
199
200
201
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
202
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
203
204
205
206
207
208
209
210
211

    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

212
    npimg = pic
213
    if isinstance(pic, torch.FloatTensor) and mode != 'F':
214
        pic = pic.mul(255).byte()
Varun Agrawal's avatar
Varun Agrawal committed
215
    if isinstance(pic, torch.Tensor):
216
217
218
219
220
221
222
223
224
225
226
        npimg = np.transpose(pic.numpy(), (1, 2, 0))

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
227
        elif npimg.dtype == np.int16:
228
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
229
        elif npimg.dtype == np.int32:
230
231
232
233
234
235
236
237
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
238
239
240
241
242
243
244
245
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

246
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
247
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


surgan12's avatar
surgan12 committed
266
def normalize(tensor, mean, std, inplace=False):
267
268
    """Normalize a tensor image with mean and standard deviation.

269
    .. note::
surgan12's avatar
surgan12 committed
270
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
271

272
    See :class:`~torchvision.transforms.Normalize` for more details.
273
274
275
276

    Args:
        tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
        mean (sequence): Sequence of means for each channel.
277
        std (sequence): Sequence of standard deviations for each channel.
278
        inplace(bool,optional): Bool to make this operation inplace.
279
280
281
282

    Returns:
        Tensor: Normalized Tensor image.
    """
283
284
    if not torch.is_tensor(tensor):
        raise TypeError('tensor should be a torch tensor. Got {}.'.format(type(tensor)))
285

286
287
288
    if tensor.ndimension() != 3:
        raise ValueError('Expected tensor to be a tensor image of size (C, H, W). Got tensor.size() = '
                         '{}.'.format(tensor.size()))
289

surgan12's avatar
surgan12 committed
290
291
292
    if not inplace:
        tensor = tensor.clone()

293
294
295
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
296
297
    if (std == 0).any():
        raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
298
299
300
301
302
    if mean.ndim == 1:
        mean = mean[:, None, None]
    if std.ndim == 1:
        std = std[:, None, None]
    tensor.sub_(mean).div_(std)
303
    return tensor
304
305
306


def resize(img, size, interpolation=Image.BILINEAR):
307
    r"""Resize the input PIL Image to the given size.
308
309
310
311
312

    Args:
        img (PIL Image): Image to be resized.
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
313
            the smaller edge of the image will be matched to this number maintaining
314
            the aspect ratio. i.e, if height > width, then image will be rescaled to
315
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`
316
317
318
319
320
321
322
323
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``

    Returns:
        PIL Image: Resized image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
Tongzhou Wang's avatar
Tongzhou Wang committed
324
    if not (isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)):
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
        raise TypeError('Got inappropriate size arg: {}'.format(size))

    if isinstance(size, int):
        w, h = img.size
        if (w <= h and w == size) or (h <= w and h == size):
            return img
        if w < h:
            ow = size
            oh = int(size * h / w)
            return img.resize((ow, oh), interpolation)
        else:
            oh = size
            ow = int(size * w / h)
            return img.resize((ow, oh), interpolation)
    else:
        return img.resize(size[::-1], interpolation)


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


349
350
351
352
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
    r"""Pad the given image on all sides with the given "pad" value.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
353
354

    Args:
355
356
        img (PIL Image or Tensor): Image to be padded.
        padding (int or tuple or list): Padding on each border. If a single int is provided this
357
358
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
359
360
361
362
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
        fill (int or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
363
            length 3, it is used to fill R, G, B channels respectively.
364
            This value is only used when the padding_mode is constant. Only int value is supported for Tensors.
365
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
366
            Only "constant" is supported for Tensors as of now.
367
368
369
370
371
372
373
374
375
376
377
378
379
380

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]
381
382

    Returns:
383
        PIL Image or Tensor: Padded image.
384
    """
385
386
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
387

388
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
389
390


391
def crop(img, top, left, height, width):
392
    """Crop the given PIL Image.
393

394
    Args:
395
396
397
398
399
        img (PIL Image): Image to be cropped. (0,0) denotes the top left corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
400

401
402
403
404
405
406
    Returns:
        PIL Image: Cropped image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

407
    return img.crop((left, top, left + width, top + height))
408
409
410


def center_crop(img, output_size):
411
412
    """Crop the given PIL Image and resize it to desired size.

413
414
415
416
417
418
419
    Args:
        img (PIL Image): Image to be cropped. (0,0) denotes the top left corner of the image.
        output_size (sequence or int): (height, width) of the crop box. If int,
            it is used for both directions
    Returns:
        PIL Image: Cropped image.
    """
420
421
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
422
423
424
425
426
    image_width, image_height = img.size
    crop_height, crop_width = output_size
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))
    return crop(img, crop_top, crop_left, crop_height, crop_width)
427
428


429
def resized_crop(img, top, left, height, width, size, interpolation=Image.BILINEAR):
430
431
    """Crop the given PIL Image and resize it to desired size.

432
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
433
434

    Args:
435
436
437
438
439
        img (PIL Image): Image to be cropped. (0,0) denotes the top left corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
440
        size (sequence or int): Desired output size. Same semantics as ``resize``.
441
442
443
444
445
446
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``.
    Returns:
        PIL Image: Cropped image.
    """
    assert _is_pil_image(img), 'img should be PIL Image'
447
    img = crop(img, top, left, height, width)
448
449
450
451
    img = resize(img, size, interpolation)
    return img


452
453
def hflip(img: Tensor) -> Tensor:
    """Horizontally flip the given PIL Image or torch Tensor.
454
455

    Args:
456
457
458
459
        img (PIL Image or Torch Tensor): Image to be flipped. If img
            is a Tensor, it is expected to be in [..., H, W] format,
            where ... means it can have an arbitrary number of trailing
            dimensions.
460
461

    Returns:
Oscar Mañas's avatar
Oscar Mañas committed
462
        PIL Image:  Horizontally flipped image.
463
    """
464
465
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
466

467
    return F_t.hflip(img)
468
469


470
471
472
473
474
475
476
477
def _parse_fill(fill, img, min_pil_version):
    """Helper function to get the fill color for rotate and perspective transforms.

    Args:
        fill (n-tuple or int or float): Pixel fill value for area outside the transformed
            image. If int or float, the value is used for all bands respectively.
            Defaults to 0 for all bands.
        img (PIL Image): Image to be filled.
478
        min_pil_version (str): The minimum PILLOW version for when the ``fillcolor`` option
479
480
481
482
483
            was first introduced in the calling function. (e.g. rotate->5.2.0, perspective->5.0.0)

    Returns:
        dict: kwarg for ``fillcolor``
    """
484
485
486
    major_found, minor_found = (int(v) for v in PILLOW_VERSION.split('.')[:2])
    major_required, minor_required = (int(v) for v in min_pil_version.split('.')[:2])
    if major_found < major_required or (major_found == major_required and minor_found < minor_required):
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        if fill is None:
            return {}
        else:
            msg = ("The option to fill background area of the transformed image, "
                   "requires pillow>={}")
            raise RuntimeError(msg.format(min_pil_version))

    num_bands = len(img.getbands())
    if fill is None:
        fill = 0
    if isinstance(fill, (int, float)) and num_bands > 1:
        fill = tuple([fill] * num_bands)
    if not isinstance(fill, (int, float)) and len(fill) != num_bands:
        msg = ("The number of elements in 'fill' does not match the number of "
               "bands of the image ({} != {})")
        raise ValueError(msg.format(len(fill), num_bands))

    return {"fillcolor": fill}


507
508
509
def _get_perspective_coeffs(startpoints, endpoints):
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
510
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
511
512
513
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
Vitaliy Chiley's avatar
Vitaliy Chiley committed
514
        List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
515
516
517
518
519
520
521
522
523
524
525
526
527
        List containing [top-left, top-right, bottom-right, bottom-left] of the transformed
                   image
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
    matrix = []

    for p1, p2 in zip(endpoints, startpoints):
        matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])

    A = torch.tensor(matrix, dtype=torch.float)
    B = torch.tensor(startpoints, dtype=torch.float).view(8)
528
    res = torch.lstsq(B, A)[0]
529
530
531
    return res.squeeze_(1).tolist()


532
def perspective(img, startpoints, endpoints, interpolation=Image.BICUBIC, fill=None):
533
534
535
536
    """Perform perspective transform of the given PIL Image.

    Args:
        img (PIL Image): Image to be transformed.
Vitaliy Chiley's avatar
Vitaliy Chiley committed
537
        startpoints: List containing [top-left, top-right, bottom-right, bottom-left] of the original image
538
        endpoints: List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image
539
        interpolation: Default- Image.BICUBIC
540
541
542
543
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
            This option is only available for ``pillow>=5.0.0``.

544
545
546
    Returns:
        PIL Image:  Perspectively transformed Image.
    """
547

548
549
550
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

551
552
    opts = _parse_fill(fill, img, '5.0.0')

553
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
554
    return img.transform(img.size, Image.PERSPECTIVE, coeffs, interpolation, **opts)
555
556


557
558
def vflip(img: Tensor) -> Tensor:
    """Vertically flip the given PIL Image or torch Tensor.
559
560

    Args:
561
562
563
564
        img (PIL Image or Torch Tensor): Image to be flipped. If img
            is a Tensor, it is expected to be in [..., H, W] format,
            where ... means it can have an arbitrary number of trailing
            dimensions.
565
566
567
568

    Returns:
        PIL Image:  Vertically flipped image.
    """
569
570
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
571

572
    return F_t.vflip(img)
573
574
575
576
577
578
579
580
581
582
583
584
585


def five_crop(img, size):
    """Crop the given PIL Image into four corners and the central crop.

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
       size (sequence or int): Desired output size of the crop. If size is an
           int instead of sequence like (h, w), a square crop (size, size) is
           made.
586

587
    Returns:
588
589
       tuple: tuple (tl, tr, bl, br, center)
                Corresponding top left, top right, bottom left, bottom right and center crop.
590
591
592
593
594
595
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
    else:
        assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

596
597
598
599
600
601
602
603
604
605
606
607
    image_width, image_height = img.size
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

    tl = img.crop((0, 0, crop_width, crop_height))
    tr = img.crop((image_width - crop_width, 0, image_width, crop_height))
    bl = img.crop((0, image_height - crop_height, crop_width, image_height))
    br = img.crop((image_width - crop_width, image_height - crop_height,
                   image_width, image_height))
    center = center_crop(img, (crop_height, crop_width))
608
609
610
611
    return (tl, tr, bl, br, center)


def ten_crop(img, size, vertical_flip=False):
612
613
614
    """Generate ten cropped images from the given PIL Image.
    Crop the given PIL Image into four corners and the central crop plus the
    flipped version of these (horizontal flipping is used by default).
615
616
617
618
619

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

620
    Args:
621
        size (sequence or int): Desired output size of the crop. If size is an
622
623
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
624
        vertical_flip (bool): Use vertical flipping instead of horizontal
625
626

    Returns:
627
628
629
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
            Corresponding top left, top right, bottom left, bottom right and
            center crop and same for the flipped image.
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
    else:
        assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


647
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
648
649
650
    """Adjust brightness of an Image.

    Args:
651
        img (PIL Image or Torch Tensor): Image to be adjusted.
652
653
654
655
656
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
657
        PIL Image or Torch Tensor: Brightness adjusted image.
658
    """
659
660
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
661

662
    return F_t.adjust_brightness(img, brightness_factor)
663
664


665
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
666
667
668
    """Adjust contrast of an Image.

    Args:
669
        img (PIL Image or Torch Tensor): Image to be adjusted.
670
671
672
673
674
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
675
        PIL Image or Torch Tensor: Contrast adjusted image.
676
    """
677
678
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
679

680
    return F_t.adjust_contrast(img, contrast_factor)
681
682


683
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
684
685
686
    """Adjust color saturation of an image.

    Args:
687
        img (PIL Image or Torch Tensor): Image to be adjusted.
688
689
690
691
692
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
693
        PIL Image or Torch Tensor: Saturation adjusted image.
694
    """
695
696
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
697

698
    return F_t.adjust_saturation(img, saturation_factor)
699
700


701
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
702
703
704
705
706
707
708
709
710
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

711
712
713
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
714
715
716
717
718
719
720
721
722
723
724
725

    Args:
        img (PIL Image): PIL Image to be adjusted.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
        PIL Image: Hue adjusted image.
    """
726
727
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
728

729
    raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
730
731
732


def adjust_gamma(img, gamma, gain=1):
733
    r"""Perform gamma correction on an image.
734
735
736
737

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

738
739
740
741
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
742

743
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
744
745
746

    Args:
        img (PIL Image): PIL Image to be adjusted.
747
748
749
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
750
751
752
753
754
755
756
757
758
759
760
        gain (float): The constant multiplier.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if gamma < 0:
        raise ValueError('Gamma should be a non-negative real number')

    input_mode = img.mode
    img = img.convert('RGB')

761
762
    gamma_map = [255 * gain * pow(ele / 255., gamma) for ele in range(256)] * 3
    img = img.point(gamma_map)  # use PIL's point-function to accelerate this part
763

764
    img = img.convert(input_mode)
765
    return img
766
767


Philip Meier's avatar
Philip Meier committed
768
def rotate(img, angle, resample=False, expand=False, center=None, fill=None):
769
    """Rotate the image by angle.
770
771
772
773


    Args:
        img (PIL Image): PIL Image to be rotated.
774
775
776
777
        angle (float or int): In degrees degrees counter clockwise order.
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional):
            An optional resampling filter. See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
778
779
780
781
782
783
784
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
785
786
787
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
            Defaults to 0 for all bands. This option is only available for ``pillow>=5.2.0``.
788

789
    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters
790

791
792
793
794
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

795
    opts = _parse_fill(fill, img, '5.2.0')
796

Philip Meier's avatar
Philip Meier committed
797
    return img.rotate(angle, resample, expand, center, **opts)
798
799


800
801
802
803
804
805
806
807
def _get_inverse_affine_matrix(center, angle, translate, scale, shear):
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
808
809
810
811
812
813
814
815
816
817
    #       RSS(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    #
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
818
819
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

820
    if isinstance(shear, numbers.Number):
ptrblck's avatar
ptrblck committed
821
        shear = [shear, 0]
822
823

    if not isinstance(shear, (tuple, list)) and len(shear) == 2:
ptrblck's avatar
ptrblck committed
824
825
826
        raise ValueError(
            "Shear should be a single value or a tuple/list containing " +
            "two values. Got {}".format(shear))
827
828
829
830
831
832
833
834
835
836
837
838

    rot = math.radians(angle)
    sx, sy = [math.radians(s) for s in shear]

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
    a = cos(rot - sy) / cos(sy)
    b = -cos(rot - sy) * tan(sx) / cos(sy) - sin(rot)
    c = sin(rot - sy) / cos(sy)
    d = -sin(rot - sy) * tan(sx) / cos(sy) + cos(rot)
839
840

    # Inverted rotation matrix with scale and shear
841
842
843
844
    # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
    M = [d, -b, 0,
         -c, a, 0]
    M = [x / scale for x in M]
845
846

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
847
848
    M[2] += M[0] * (-cx - tx) + M[1] * (-cy - ty)
    M[5] += M[3] * (-cx - tx) + M[4] * (-cy - ty)
849
850

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
851
852
853
    M[2] += cx
    M[5] += cy
    return M
854
855
856
857
858
859
860


def affine(img, angle, translate, scale, shear, resample=0, fillcolor=None):
    """Apply affine transformation on the image keeping image center invariant

    Args:
        img (PIL Image): PIL Image to be rotated.
861
        angle (float or int): rotation angle in degrees between -180 and 180, clockwise direction.
862
863
        translate (list or tuple of integers): horizontal and vertical translations (post-rotation translation)
        scale (float): overall scale
ptrblck's avatar
ptrblck committed
864
865
866
        shear (float or tuple or list): shear angle value in degrees between -180 to 180, clockwise direction.
        If a tuple of list is specified, the first value corresponds to a shear parallel to the x axis, while
        the second value corresponds to a shear parallel to the y axis.
867
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional):
868
            An optional resampling filter.
869
870
            See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
871
        fillcolor (int): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0)
872
873
874
875
876
877
878
879
880
881
882
883
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
        "Argument translate should be a list or tuple of length 2"

    assert scale > 0.0, "Argument scale should be positive"

    output_size = img.size
    center = (img.size[0] * 0.5 + 0.5, img.size[1] * 0.5 + 0.5)
    matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
884
    kwargs = {"fillcolor": fillcolor} if int(PILLOW_VERSION.split('.')[0]) >= 5 else {}
885
    return img.transform(output_size, Image.AFFINE, matrix, resample, **kwargs)
886
887


888
889
890
891
892
893
894
def to_grayscale(img, num_output_channels=1):
    """Convert image to grayscale version of image.

    Args:
        img (PIL Image): Image to be converted to grayscale.

    Returns:
895
896
897
898
        PIL Image: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if num_output_channels == 1:
        img = img.convert('L')
    elif num_output_channels == 3:
        img = img.convert('L')
        np_img = np.array(img, dtype=np.uint8)
        np_img = np.dstack([np_img, np_img, np_img])
        img = Image.fromarray(np_img, 'RGB')
    else:
        raise ValueError('num_output_channels should be either 1 or 3')

    return img
914
915


916
def erase(img, i, j, h, w, v, inplace=False):
917
918
919
920
921
922
923
924
925
    """ Erase the input Tensor Image with given value.

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
926
        inplace(bool, optional): For in-place operations. By default is set False.
927
928
929
930
931
932
933

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

934
935
936
    if not inplace:
        img = img.clone()

937
938
    img[:, i:i + h, j:j + w] = v
    return img