ps_roi_align.py 2.76 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch
from torch import nn, Tensor

from torch.nn.modules.utils import _pair
from torch.jit.annotations import List

from ._utils import convert_boxes_to_roi_format


def ps_roi_align(input, boxes, output_size, spatial_scale=1.0, sampling_ratio=-1):
    # type: (Tensor, Tensor, int, float, int) -> Tensor
    """
    Performs Position-Sensitive Region of Interest (RoI) Align operator
    mentioned in Light-Head R-CNN.

    Arguments:
        input (Tensor[N, C, H, W]): input tensor
        boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
            format where the regions will be taken from. If a single Tensor is passed,
            then the first column should contain the batch index. If a list of Tensors
            is passed, then each Tensor will correspond to the boxes for an element i
            in a batch
        output_size (int or Tuple[int, int]): the size of the output after the cropping
            is performed, as (height, width)
        spatial_scale (float): a scaling factor that maps the input coordinates to
            the box coordinates. Default: 1.0
        sampling_ratio (int): number of sampling points in the interpolation grid
            used to compute the output value of each pooled output bin. If > 0
            then exactly sampling_ratio x sampling_ratio grid points are used.
            If <= 0, then an adaptive number of grid points are used (computed as
            ceil(roi_width / pooled_w), and likewise for height). Default: -1

    Returns:
        output (Tensor[K, C, output_size[0], output_size[1]])
    """
    rois = boxes
    output_size = _pair(output_size)
    if not isinstance(rois, torch.Tensor):
        rois = convert_boxes_to_roi_format(rois)
    output, _ = torch.ops.torchvision.ps_roi_align(input, rois, spatial_scale,
                                                   output_size[0],
                                                   output_size[1],
                                                   sampling_ratio)
    return output


class PSRoIAlign(nn.Module):
    """
    See ps_roi_align
    """
    def __init__(self, output_size, spatial_scale, sampling_ratio):
        super(PSRoIAlign, self).__init__()
        self.output_size = output_size
        self.spatial_scale = spatial_scale
        self.sampling_ratio = sampling_ratio

    def forward(self, input, rois):
        return ps_roi_align(input, rois, self.output_size, self.spatial_scale,
                            self.sampling_ratio)

    def __repr__(self):
        tmpstr = self.__class__.__name__ + '('
        tmpstr += 'output_size=' + str(self.output_size)
        tmpstr += ', spatial_scale=' + str(self.spatial_scale)
        tmpstr += ', sampling_ratio=' + str(self.sampling_ratio)
        tmpstr += ')'
        return tmpstr