import torch from torch import nn, Tensor from torch.nn.modules.utils import _pair from torch.jit.annotations import List from ._utils import convert_boxes_to_roi_format def ps_roi_align(input, boxes, output_size, spatial_scale=1.0, sampling_ratio=-1): # type: (Tensor, Tensor, int, float, int) -> Tensor """ Performs Position-Sensitive Region of Interest (RoI) Align operator mentioned in Light-Head R-CNN. Arguments: input (Tensor[N, C, H, W]): input tensor boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2) format where the regions will be taken from. If a single Tensor is passed, then the first column should contain the batch index. If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i in a batch output_size (int or Tuple[int, int]): the size of the output after the cropping is performed, as (height, width) spatial_scale (float): a scaling factor that maps the input coordinates to the box coordinates. Default: 1.0 sampling_ratio (int): number of sampling points in the interpolation grid used to compute the output value of each pooled output bin. If > 0 then exactly sampling_ratio x sampling_ratio grid points are used. If <= 0, then an adaptive number of grid points are used (computed as ceil(roi_width / pooled_w), and likewise for height). Default: -1 Returns: output (Tensor[K, C, output_size[0], output_size[1]]) """ rois = boxes output_size = _pair(output_size) if not isinstance(rois, torch.Tensor): rois = convert_boxes_to_roi_format(rois) output, _ = torch.ops.torchvision.ps_roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio) return output class PSRoIAlign(nn.Module): """ See ps_roi_align """ def __init__(self, output_size, spatial_scale, sampling_ratio): super(PSRoIAlign, self).__init__() self.output_size = output_size self.spatial_scale = spatial_scale self.sampling_ratio = sampling_ratio def forward(self, input, rois): return ps_roi_align(input, rois, self.output_size, self.spatial_scale, self.sampling_ratio) def __repr__(self): tmpstr = self.__class__.__name__ + '(' tmpstr += 'output_size=' + str(self.output_size) tmpstr += ', spatial_scale=' + str(self.spatial_scale) tmpstr += ', sampling_ratio=' + str(self.sampling_ratio) tmpstr += ')' return tmpstr