functional.py 34.9 KB
Newer Older
1
import torch
2
from torch import Tensor
3
import math
4
from PIL import Image, ImageOps, ImageEnhance, __version__ as PILLOW_VERSION
5
6
7
8
9
try:
    import accimage
except ImportError:
    accimage = None
import numpy as np
10
from numpy import sin, cos, tan
11
import numbers
12
from collections.abc import Sequence, Iterable
13
14
import warnings

15
16
17
from . import functional_pil as F_pil
from . import functional_tensor as F_t

18
19
20
21
22
23
24
25

def _is_pil_image(img):
    if accimage is not None:
        return isinstance(img, (Image.Image, accimage.Image))
    else:
        return isinstance(img, Image.Image)


26
27
28
29
def _is_numpy(img):
    return isinstance(img, np.ndarray)


30
def _is_numpy_image(img):
31
    return img.ndim in {2, 3}
32
33
34
35
36
37
38
39
40
41
42
43
44


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    See ``ToTensor`` for more details.

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
45
    if not(_is_pil_image(pic) or _is_numpy(pic)):
46
47
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

48
49
50
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

51
52
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
53
54
55
        if pic.ndim == 2:
            pic = pic[:, :, None]

56
57
        img = torch.from_numpy(pic.transpose((2, 0, 1)))
        # backward compatibility
58
59
60
61
        if isinstance(img, torch.ByteTensor):
            return img.float().div(255)
        else:
            return img
62
63
64
65
66
67
68
69
70
71
72

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
        pic.copyto(nppic)
        return torch.from_numpy(nppic)

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
73
74
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
75
76
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
77
78
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
79
80

    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
81
    # put it from HWC to CHW format
82
    img = img.permute((2, 0, 1)).contiguous()
83
84
85
86
87
88
    if isinstance(img, torch.ByteTensor):
        return img.float().div(255)
    else:
        return img


89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def pil_to_tensor(pic):
    """Convert a ``PIL Image`` to a tensor of the same type.

    See ``AsTensor`` for more details.

    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
    if not(_is_pil_image(pic)):
        raise TypeError('pic should be PIL Image. Got {}'.format(type(pic)))

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
    img = torch.as_tensor(np.asarray(pic))
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


116
117
118
def to_pil_image(pic, mode=None):
    """Convert a tensor or an ndarray to PIL Image.

119
    See :class:`~torchvision.transforms.ToPILImage` for more details.
120
121
122
123
124

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

125
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
126
127
128
129

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
130
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
131
132
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
133
134
135
136
137
138
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
139
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
140
141
142
143
144
145
146
147
148

    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

149
    npimg = pic
150
    if isinstance(pic, torch.FloatTensor) and mode != 'F':
151
        pic = pic.mul(255).byte()
Varun Agrawal's avatar
Varun Agrawal committed
152
    if isinstance(pic, torch.Tensor):
153
154
155
156
157
158
159
160
161
162
163
        npimg = np.transpose(pic.numpy(), (1, 2, 0))

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
164
        elif npimg.dtype == np.int16:
165
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
166
        elif npimg.dtype == np.int32:
167
168
169
170
171
172
173
174
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
175
176
177
178
179
180
181
182
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

183
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
184
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


surgan12's avatar
surgan12 committed
203
def normalize(tensor, mean, std, inplace=False):
204
205
    """Normalize a tensor image with mean and standard deviation.

206
    .. note::
surgan12's avatar
surgan12 committed
207
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
208

209
    See :class:`~torchvision.transforms.Normalize` for more details.
210
211
212
213

    Args:
        tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
        mean (sequence): Sequence of means for each channel.
214
        std (sequence): Sequence of standard deviations for each channel.
215
        inplace(bool,optional): Bool to make this operation inplace.
216
217
218
219

    Returns:
        Tensor: Normalized Tensor image.
    """
220
221
    if not torch.is_tensor(tensor):
        raise TypeError('tensor should be a torch tensor. Got {}.'.format(type(tensor)))
222

223
224
225
    if tensor.ndimension() != 3:
        raise ValueError('Expected tensor to be a tensor image of size (C, H, W). Got tensor.size() = '
                         '{}.'.format(tensor.size()))
226

surgan12's avatar
surgan12 committed
227
228
229
    if not inplace:
        tensor = tensor.clone()

230
231
232
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
233
234
    if (std == 0).any():
        raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
235
236
237
238
239
    if mean.ndim == 1:
        mean = mean[:, None, None]
    if std.ndim == 1:
        std = std[:, None, None]
    tensor.sub_(mean).div_(std)
240
    return tensor
241
242
243


def resize(img, size, interpolation=Image.BILINEAR):
244
    r"""Resize the input PIL Image to the given size.
245
246
247
248
249
250
251

    Args:
        img (PIL Image): Image to be resized.
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
            the smaller edge of the image will be matched to this number maintaing
            the aspect ratio. i.e, if height > width, then image will be rescaled to
252
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`
253
254
255
256
257
258
259
260
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``

    Returns:
        PIL Image: Resized image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
Tongzhou Wang's avatar
Tongzhou Wang committed
261
    if not (isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)):
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
        raise TypeError('Got inappropriate size arg: {}'.format(size))

    if isinstance(size, int):
        w, h = img.size
        if (w <= h and w == size) or (h <= w and h == size):
            return img
        if w < h:
            ow = size
            oh = int(size * h / w)
            return img.resize((ow, oh), interpolation)
        else:
            oh = size
            ow = int(size * w / h)
            return img.resize((ow, oh), interpolation)
    else:
        return img.resize(size[::-1], interpolation)


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


286
def pad(img, padding, fill=0, padding_mode='constant'):
287
    r"""Pad the given PIL Image on all sides with specified padding mode and fill value.
288
289
290
291
292
293
294
295

    Args:
        img (PIL Image): Image to be padded.
        padding (int or tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
296
        fill: Pixel fill value for constant fill. Default is 0. If a tuple of
297
            length 3, it is used to fill R, G, B channels respectively.
298
299
            This value is only used when the padding_mode is constant
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
300
301
302
303
304
305
306
307
308
309
310
311
312
313

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]
314
315
316
317
318
319
320
321
322
323
324

    Returns:
        PIL Image: Padded image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if not isinstance(padding, (numbers.Number, tuple)):
        raise TypeError('Got inappropriate padding arg')
    if not isinstance(fill, (numbers.Number, str, tuple)):
        raise TypeError('Got inappropriate fill arg')
325
326
    if not isinstance(padding_mode, str):
        raise TypeError('Got inappropriate padding_mode arg')
327

Tongzhou Wang's avatar
Tongzhou Wang committed
328
    if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
329
330
331
        raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " +
                         "{} element tuple".format(len(padding)))

332
333
334
335
    assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
        'Padding mode should be either constant, edge, reflect or symmetric'

    if padding_mode == 'constant':
336
337
338
339
340
341
        if isinstance(fill, numbers.Number):
            fill = (fill,) * len(img.getbands())
        if len(fill) != len(img.getbands()):
            raise ValueError('fill should have the same number of elements '
                             'as the number of channels in the image '
                             '({}), got {} instead'.format(len(img.getbands()), len(fill)))
surgan12's avatar
surgan12 committed
342
343
344
345
346
347
        if img.mode == 'P':
            palette = img.getpalette()
            image = ImageOps.expand(img, border=padding, fill=fill)
            image.putpalette(palette)
            return image

348
349
350
351
        return ImageOps.expand(img, border=padding, fill=fill)
    else:
        if isinstance(padding, int):
            pad_left = pad_right = pad_top = pad_bottom = padding
Tongzhou Wang's avatar
Tongzhou Wang committed
352
        if isinstance(padding, Sequence) and len(padding) == 2:
353
354
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
Tongzhou Wang's avatar
Tongzhou Wang committed
355
        if isinstance(padding, Sequence) and len(padding) == 4:
356
357
358
359
360
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]

surgan12's avatar
surgan12 committed
361
362
363
364
365
366
367
368
        if img.mode == 'P':
            palette = img.getpalette()
            img = np.asarray(img)
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode)
            img = Image.fromarray(img)
            img.putpalette(palette)
            return img

369
370
371
372
373
374
375
376
377
        img = np.asarray(img)
        # RGB image
        if len(img.shape) == 3:
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), padding_mode)
        # Grayscale image
        if len(img.shape) == 2:
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode)

        return Image.fromarray(img)
378
379


380
def crop(img, top, left, height, width):
381
    """Crop the given PIL Image.
382

383
    Args:
384
385
386
387
388
        img (PIL Image): Image to be cropped. (0,0) denotes the top left corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
389

390
391
392
393
394
395
    Returns:
        PIL Image: Cropped image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

396
    return img.crop((left, top, left + width, top + height))
397
398
399


def center_crop(img, output_size):
400
401
    """Crop the given PIL Image and resize it to desired size.

402
403
404
405
406
407
408
    Args:
        img (PIL Image): Image to be cropped. (0,0) denotes the top left corner of the image.
        output_size (sequence or int): (height, width) of the crop box. If int,
            it is used for both directions
    Returns:
        PIL Image: Cropped image.
    """
409
410
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
411
412
413
414
415
    image_width, image_height = img.size
    crop_height, crop_width = output_size
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))
    return crop(img, crop_top, crop_left, crop_height, crop_width)
416
417


418
def resized_crop(img, top, left, height, width, size, interpolation=Image.BILINEAR):
419
420
    """Crop the given PIL Image and resize it to desired size.

421
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
422
423

    Args:
424
425
426
427
428
        img (PIL Image): Image to be cropped. (0,0) denotes the top left corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
429
        size (sequence or int): Desired output size. Same semantics as ``resize``.
430
431
432
433
434
435
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``.
    Returns:
        PIL Image: Cropped image.
    """
    assert _is_pil_image(img), 'img should be PIL Image'
436
    img = crop(img, top, left, height, width)
437
438
439
440
    img = resize(img, size, interpolation)
    return img


441
442
def hflip(img: Tensor) -> Tensor:
    """Horizontally flip the given PIL Image or torch Tensor.
443
444

    Args:
445
446
447
448
        img (PIL Image or Torch Tensor): Image to be flipped. If img
            is a Tensor, it is expected to be in [..., H, W] format,
            where ... means it can have an arbitrary number of trailing
            dimensions.
449
450

    Returns:
Oscar Mañas's avatar
Oscar Mañas committed
451
        PIL Image:  Horizontally flipped image.
452
    """
453
454
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
455

456
    return F_t.hflip(img)
457
458


459
460
461
462
463
464
465
466
def _parse_fill(fill, img, min_pil_version):
    """Helper function to get the fill color for rotate and perspective transforms.

    Args:
        fill (n-tuple or int or float): Pixel fill value for area outside the transformed
            image. If int or float, the value is used for all bands respectively.
            Defaults to 0 for all bands.
        img (PIL Image): Image to be filled.
467
        min_pil_version (str): The minimum PILLOW version for when the ``fillcolor`` option
468
469
470
471
472
            was first introduced in the calling function. (e.g. rotate->5.2.0, perspective->5.0.0)

    Returns:
        dict: kwarg for ``fillcolor``
    """
473
474
475
    major_found, minor_found = (int(v) for v in PILLOW_VERSION.split('.')[:2])
    major_required, minor_required = (int(v) for v in min_pil_version.split('.')[:2])
    if major_found < major_required or (major_found == major_required and minor_found < minor_required):
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
        if fill is None:
            return {}
        else:
            msg = ("The option to fill background area of the transformed image, "
                   "requires pillow>={}")
            raise RuntimeError(msg.format(min_pil_version))

    num_bands = len(img.getbands())
    if fill is None:
        fill = 0
    if isinstance(fill, (int, float)) and num_bands > 1:
        fill = tuple([fill] * num_bands)
    if not isinstance(fill, (int, float)) and len(fill) != num_bands:
        msg = ("The number of elements in 'fill' does not match the number of "
               "bands of the image ({} != {})")
        raise ValueError(msg.format(len(fill), num_bands))

    return {"fillcolor": fill}


496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
def _get_perspective_coeffs(startpoints, endpoints):
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

    In Perspective Transform each pixel (x, y) in the orignal image gets transformed as,
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
        List containing [top-left, top-right, bottom-right, bottom-left] of the orignal image,
        List containing [top-left, top-right, bottom-right, bottom-left] of the transformed
                   image
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
    matrix = []

    for p1, p2 in zip(endpoints, startpoints):
        matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])

    A = torch.tensor(matrix, dtype=torch.float)
    B = torch.tensor(startpoints, dtype=torch.float).view(8)
517
    res = torch.lstsq(B, A)[0]
518
519
520
    return res.squeeze_(1).tolist()


521
def perspective(img, startpoints, endpoints, interpolation=Image.BICUBIC, fill=None):
522
523
524
525
    """Perform perspective transform of the given PIL Image.

    Args:
        img (PIL Image): Image to be transformed.
526
527
        startpoints: List containing [top-left, top-right, bottom-right, bottom-left] of the orignal image
        endpoints: List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image
528
        interpolation: Default- Image.BICUBIC
529
530
531
532
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
            This option is only available for ``pillow>=5.0.0``.

533
534
535
    Returns:
        PIL Image:  Perspectively transformed Image.
    """
536

537
538
539
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

540
541
    opts = _parse_fill(fill, img, '5.0.0')

542
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
543
    return img.transform(img.size, Image.PERSPECTIVE, coeffs, interpolation, **opts)
544
545


546
547
def vflip(img: Tensor) -> Tensor:
    """Vertically flip the given PIL Image or torch Tensor.
548
549

    Args:
550
551
552
553
        img (PIL Image or Torch Tensor): Image to be flipped. If img
            is a Tensor, it is expected to be in [..., H, W] format,
            where ... means it can have an arbitrary number of trailing
            dimensions.
554
555
556
557

    Returns:
        PIL Image:  Vertically flipped image.
    """
558
559
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
560

561
    return F_t.vflip(img)
562
563
564
565
566
567
568
569
570
571
572
573
574


def five_crop(img, size):
    """Crop the given PIL Image into four corners and the central crop.

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
       size (sequence or int): Desired output size of the crop. If size is an
           int instead of sequence like (h, w), a square crop (size, size) is
           made.
575

576
    Returns:
577
578
       tuple: tuple (tl, tr, bl, br, center)
                Corresponding top left, top right, bottom left, bottom right and center crop.
579
580
581
582
583
584
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
    else:
        assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

585
586
587
588
589
590
591
592
593
594
595
596
    image_width, image_height = img.size
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

    tl = img.crop((0, 0, crop_width, crop_height))
    tr = img.crop((image_width - crop_width, 0, image_width, crop_height))
    bl = img.crop((0, image_height - crop_height, crop_width, image_height))
    br = img.crop((image_width - crop_width, image_height - crop_height,
                   image_width, image_height))
    center = center_crop(img, (crop_height, crop_width))
597
598
599
600
    return (tl, tr, bl, br, center)


def ten_crop(img, size, vertical_flip=False):
601
602
603
    """Generate ten cropped images from the given PIL Image.
    Crop the given PIL Image into four corners and the central crop plus the
    flipped version of these (horizontal flipping is used by default).
604
605
606
607
608

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

609
    Args:
610
        size (sequence or int): Desired output size of the crop. If size is an
611
612
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
613
        vertical_flip (bool): Use vertical flipping instead of horizontal
614
615

    Returns:
616
617
618
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
            Corresponding top left, top right, bottom left, bottom right and
            center crop and same for the flipped image.
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
    else:
        assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


636
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
637
638
639
    """Adjust brightness of an Image.

    Args:
640
        img (PIL Image or Torch Tensor): Image to be adjusted.
641
642
643
644
645
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
646
        PIL Image or Torch Tensor: Brightness adjusted image.
647
    """
648
649
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
650

651
    return F_t.adjust_brightness(img, brightness_factor)
652
653


654
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
655
656
657
    """Adjust contrast of an Image.

    Args:
658
        img (PIL Image or Torch Tensor): Image to be adjusted.
659
660
661
662
663
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
664
        PIL Image or Torch Tensor: Contrast adjusted image.
665
    """
666
667
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
668

669
    return F_t.adjust_contrast(img, contrast_factor)
670
671


672
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
673
674
675
    """Adjust color saturation of an image.

    Args:
676
        img (PIL Image or Torch Tensor): Image to be adjusted.
677
678
679
680
681
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
682
        PIL Image or Torch Tensor: Saturation adjusted image.
683
    """
684
685
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
686

687
    return F_t.adjust_saturation(img, saturation_factor)
688
689


690
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
691
692
693
694
695
696
697
698
699
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

700
701
702
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
703
704
705
706
707
708
709
710
711
712
713
714

    Args:
        img (PIL Image): PIL Image to be adjusted.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
        PIL Image: Hue adjusted image.
    """
715
716
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
717

718
    raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
719
720
721


def adjust_gamma(img, gamma, gain=1):
722
    r"""Perform gamma correction on an image.
723
724
725
726

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

727
728
729
730
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
731

732
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
733
734
735

    Args:
        img (PIL Image): PIL Image to be adjusted.
736
737
738
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
739
740
741
742
743
744
745
746
747
748
749
        gain (float): The constant multiplier.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if gamma < 0:
        raise ValueError('Gamma should be a non-negative real number')

    input_mode = img.mode
    img = img.convert('RGB')

750
751
    gamma_map = [255 * gain * pow(ele / 255., gamma) for ele in range(256)] * 3
    img = img.point(gamma_map)  # use PIL's point-function to accelerate this part
752

753
    img = img.convert(input_mode)
754
    return img
755
756


Philip Meier's avatar
Philip Meier committed
757
def rotate(img, angle, resample=False, expand=False, center=None, fill=None):
758
    """Rotate the image by angle.
759
760
761
762


    Args:
        img (PIL Image): PIL Image to be rotated.
763
764
765
766
        angle (float or int): In degrees degrees counter clockwise order.
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional):
            An optional resampling filter. See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
767
768
769
770
771
772
773
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
774
775
776
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
            Defaults to 0 for all bands. This option is only available for ``pillow>=5.2.0``.
777

778
    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters
779

780
781
782
783
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

784
    opts = _parse_fill(fill, img, '5.2.0')
785

Philip Meier's avatar
Philip Meier committed
786
    return img.rotate(angle, resample, expand, center, **opts)
787
788


789
790
791
792
793
794
795
796
def _get_inverse_affine_matrix(center, angle, translate, scale, shear):
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
797
798
799
800
801
802
803
804
805
806
    #       RSS(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    #
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
807
808
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

809
    if isinstance(shear, numbers.Number):
ptrblck's avatar
ptrblck committed
810
        shear = [shear, 0]
811
812

    if not isinstance(shear, (tuple, list)) and len(shear) == 2:
ptrblck's avatar
ptrblck committed
813
814
815
        raise ValueError(
            "Shear should be a single value or a tuple/list containing " +
            "two values. Got {}".format(shear))
816
817
818
819
820
821
822
823
824
825
826
827

    rot = math.radians(angle)
    sx, sy = [math.radians(s) for s in shear]

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
    a = cos(rot - sy) / cos(sy)
    b = -cos(rot - sy) * tan(sx) / cos(sy) - sin(rot)
    c = sin(rot - sy) / cos(sy)
    d = -sin(rot - sy) * tan(sx) / cos(sy) + cos(rot)
828
829

    # Inverted rotation matrix with scale and shear
830
831
832
833
    # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
    M = [d, -b, 0,
         -c, a, 0]
    M = [x / scale for x in M]
834
835

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
836
837
    M[2] += M[0] * (-cx - tx) + M[1] * (-cy - ty)
    M[5] += M[3] * (-cx - tx) + M[4] * (-cy - ty)
838
839

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
840
841
842
    M[2] += cx
    M[5] += cy
    return M
843
844
845
846
847
848
849


def affine(img, angle, translate, scale, shear, resample=0, fillcolor=None):
    """Apply affine transformation on the image keeping image center invariant

    Args:
        img (PIL Image): PIL Image to be rotated.
850
        angle (float or int): rotation angle in degrees between -180 and 180, clockwise direction.
851
852
        translate (list or tuple of integers): horizontal and vertical translations (post-rotation translation)
        scale (float): overall scale
ptrblck's avatar
ptrblck committed
853
854
855
        shear (float or tuple or list): shear angle value in degrees between -180 to 180, clockwise direction.
        If a tuple of list is specified, the first value corresponds to a shear parallel to the x axis, while
        the second value corresponds to a shear parallel to the y axis.
856
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional):
857
            An optional resampling filter.
858
859
            See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
860
        fillcolor (int): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0)
861
862
863
864
865
866
867
868
869
870
871
872
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
        "Argument translate should be a list or tuple of length 2"

    assert scale > 0.0, "Argument scale should be positive"

    output_size = img.size
    center = (img.size[0] * 0.5 + 0.5, img.size[1] * 0.5 + 0.5)
    matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
873
    kwargs = {"fillcolor": fillcolor} if int(PILLOW_VERSION.split('.')[0]) >= 5 else {}
874
    return img.transform(output_size, Image.AFFINE, matrix, resample, **kwargs)
875
876


877
878
879
880
881
882
883
def to_grayscale(img, num_output_channels=1):
    """Convert image to grayscale version of image.

    Args:
        img (PIL Image): Image to be converted to grayscale.

    Returns:
884
885
886
887
        PIL Image: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if num_output_channels == 1:
        img = img.convert('L')
    elif num_output_channels == 3:
        img = img.convert('L')
        np_img = np.array(img, dtype=np.uint8)
        np_img = np.dstack([np_img, np_img, np_img])
        img = Image.fromarray(np_img, 'RGB')
    else:
        raise ValueError('num_output_channels should be either 1 or 3')

    return img
903
904


905
def erase(img, i, j, h, w, v, inplace=False):
906
907
908
909
910
911
912
913
914
    """ Erase the input Tensor Image with given value.

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
915
        inplace(bool, optional): For in-place operations. By default is set False.
916
917
918
919
920
921
922

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

923
924
925
    if not inplace:
        img = img.clone()

926
927
    img[:, i:i + h, j:j + w] = v
    return img