transforms_v2_kernel_infos.py 86 KB
Newer Older
1
import decimal
2
3
4
5
6
import functools
import itertools
import math

import numpy as np
7
import PIL.Image
8
9
import pytest
import torch.testing
10
import torchvision.ops
11
import torchvision.transforms.v2.functional as F
12
from common_utils import (
13
    ArgsKwargs,
14
    combinations_grid,
15
16
    get_num_channels,
    ImageLoader,
17
    InfoBase,
18
    make_bounding_box_loader,
19
    make_bounding_box_loaders,
20
    make_detection_mask_loader,
21
22
    make_image_loader,
    make_image_loaders,
23
    make_image_loaders_for_interpolation,
24
    make_mask_loaders,
25
    make_video_loader,
26
    make_video_loaders,
27
28
    mark_framework_limitation,
    TestMark,
29
)
30
from torch.utils._pytree import tree_map
31
from torchvision import datapoints
32
from torchvision.transforms._functional_tensor import _max_value as get_max_value, _parse_pad_padding
33
34
35
36

__all__ = ["KernelInfo", "KERNEL_INFOS"]


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
class KernelInfo(InfoBase):
    def __init__(
        self,
        kernel,
        *,
        # Defaults to `kernel.__name__`. Should be set if the function is exposed under a different name
        # TODO: This can probably be removed after roll-out since we shouldn't have any aliasing then
        kernel_name=None,
        # Most common tests use these inputs to check the kernel. As such it should cover all valid code paths, but
        # should not include extensive parameter combinations to keep to overall test count moderate.
        sample_inputs_fn,
        # This function should mirror the kernel. It should have the same signature as the `kernel` and as such also
        # take tensors as inputs. Any conversion into another object type, e.g. PIL images or numpy arrays, should
        # happen inside the function. It should return a tensor or to be more precise an object that can be compared to
        # a tensor by `assert_close`. If omitted, no reference test will be performed.
        reference_fn=None,
        # These inputs are only used for the reference tests and thus can be comprehensive with regard to the parameter
        # values to be tested. If not specified, `sample_inputs_fn` will be used.
        reference_inputs_fn=None,
56
        # If true-ish, triggers a test that checks the kernel for consistency between uint8 and float32 inputs with the
57
        # reference inputs. This is usually used whenever we use a PIL kernel as reference.
58
59
60
61
        # Can be a callable in which case it will be called with `other_args, kwargs`. It should return the same
        # structure, but with adapted parameters. This is useful in case a parameter value is closely tied to the input
        # dtype.
        float32_vs_uint8=False,
62
63
64
        # Some kernels don't have dispatchers that would handle logging the usage. Thus, the kernel has to do it
        # manually. If set, triggers a test that makes sure this happens.
        logs_usage=False,
65
66
67
68
69
70
71
72
73
74
        # See InfoBase
        test_marks=None,
        # See InfoBase
        closeness_kwargs=None,
    ):
        super().__init__(id=kernel_name or kernel.__name__, test_marks=test_marks, closeness_kwargs=closeness_kwargs)
        self.kernel = kernel
        self.sample_inputs_fn = sample_inputs_fn
        self.reference_fn = reference_fn
        self.reference_inputs_fn = reference_inputs_fn
75

76
77
78
        if float32_vs_uint8 and not callable(float32_vs_uint8):
            float32_vs_uint8 = lambda other_args, kwargs: (other_args, kwargs)  # noqa: E731
        self.float32_vs_uint8 = float32_vs_uint8
79
        self.logs_usage = logs_usage
80
81


82
def pixel_difference_closeness_kwargs(uint8_atol, *, dtype=torch.uint8, mae=False):
83
    return dict(atol=uint8_atol / 255 * get_max_value(dtype), rtol=0, mae=mae)
84
85
86
87


def cuda_vs_cpu_pixel_difference(atol=1):
    return {
88
        (("TestKernels", "test_cuda_vs_cpu"), dtype, "cuda"): pixel_difference_closeness_kwargs(atol, dtype=dtype)
89
90
91
92
        for dtype in [torch.uint8, torch.float32]
    }


93
def pil_reference_pixel_difference(atol=1, mae=False):
94
    return {
95
        (("TestKernels", "test_against_reference"), torch.uint8, "cpu"): pixel_difference_closeness_kwargs(
96
            atol, mae=mae
97
98
99
100
        )
    }


101
def float32_vs_uint8_pixel_difference(atol=1, mae=False):
102
103
104
105
106
    return {
        (
            ("TestKernels", "test_float32_vs_uint8"),
            torch.float32,
            "cpu",
107
        ): pixel_difference_closeness_kwargs(atol, dtype=torch.float32, mae=mae)
108
    }
109

110

111
def scripted_vs_eager_float64_tolerances(device, atol=1e-6, rtol=1e-6):
112
113
114
115
116
    return {
        (("TestKernels", "test_scripted_vs_eager"), torch.float64, device): {"atol": atol, "rtol": rtol, "mae": False},
    }


117
118
def pil_reference_wrapper(pil_kernel):
    @functools.wraps(pil_kernel)
119
120
121
122
    def wrapper(input_tensor, *other_args, **kwargs):
        if input_tensor.dtype != torch.uint8:
            raise pytest.UsageError(f"Can only test uint8 tensor images against PIL, but input is {input_tensor.dtype}")
        if input_tensor.ndim > 3:
123
            raise pytest.UsageError(
124
                f"Can only test single tensor images against PIL, but input has shape {input_tensor.shape}"
125
126
            )

127
128
129
130
131
132
133
134
135
136
137
138
139
140
        input_pil = F.to_image_pil(input_tensor)
        output_pil = pil_kernel(input_pil, *other_args, **kwargs)
        if not isinstance(output_pil, PIL.Image.Image):
            return output_pil

        output_tensor = F.to_image_tensor(output_pil)

        # 2D mask shenanigans
        if output_tensor.ndim == 2 and input_tensor.ndim == 3:
            output_tensor = output_tensor.unsqueeze(0)
        elif output_tensor.ndim == 3 and input_tensor.ndim == 2:
            output_tensor = output_tensor.squeeze(0)

        return output_tensor
141
142
143
144

    return wrapper


145
146
147
148
def xfail_jit(reason, *, condition=None):
    return TestMark(("TestKernels", "test_scripted_vs_eager"), pytest.mark.xfail(reason=reason), condition=condition)


149
def xfail_jit_python_scalar_arg(name, *, reason=None):
150
151
    return xfail_jit(
        reason or f"Python scalar int or float for `{name}` is not supported when scripting",
152
153
154
155
        condition=lambda args_kwargs: isinstance(args_kwargs.kwargs.get(name), (int, float)),
    )


156
157
158
159
KERNEL_INFOS = []


def sample_inputs_horizontal_flip_image_tensor():
160
    for image_loader in make_image_loaders(sizes=["random"], dtypes=[torch.float32]):
161
162
163
164
        yield ArgsKwargs(image_loader)


def reference_inputs_horizontal_flip_image_tensor():
165
    for image_loader in make_image_loaders(extra_dims=[()], dtypes=[torch.uint8]):
166
167
168
169
        yield ArgsKwargs(image_loader)


def sample_inputs_horizontal_flip_bounding_box():
170
    for bounding_box_loader in make_bounding_box_loaders(
171
        formats=[datapoints.BoundingBoxFormat.XYXY], dtypes=[torch.float32]
172
    ):
173
        yield ArgsKwargs(
174
            bounding_box_loader, format=bounding_box_loader.format, spatial_size=bounding_box_loader.spatial_size
175
176
177
178
        )


def sample_inputs_horizontal_flip_mask():
179
    for image_loader in make_mask_loaders(sizes=["random"], dtypes=[torch.uint8]):
180
181
182
        yield ArgsKwargs(image_loader)


183
184
185
186
187
def sample_inputs_horizontal_flip_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader)


188
189
190
191
192
193
def reference_horizontal_flip_bounding_box(bounding_box, *, format, spatial_size):
    affine_matrix = np.array(
        [
            [-1, 0, spatial_size[1]],
            [0, 1, 0],
        ],
194
        dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
195
196
    )

197
198
199
    expected_bboxes = reference_affine_bounding_box_helper(
        bounding_box, format=format, spatial_size=spatial_size, affine_matrix=affine_matrix
    )
200
201
202
203
204
205
206
207
208
209
210
211
212

    return expected_bboxes


def reference_inputs_flip_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders(extra_dims=[()]):
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
            spatial_size=bounding_box_loader.spatial_size,
        )


213
214
215
216
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.horizontal_flip_image_tensor,
217
            kernel_name="horizontal_flip_image_tensor",
218
219
220
            sample_inputs_fn=sample_inputs_horizontal_flip_image_tensor,
            reference_fn=pil_reference_wrapper(F.horizontal_flip_image_pil),
            reference_inputs_fn=reference_inputs_horizontal_flip_image_tensor,
221
            float32_vs_uint8=True,
222
223
224
225
        ),
        KernelInfo(
            F.horizontal_flip_bounding_box,
            sample_inputs_fn=sample_inputs_horizontal_flip_bounding_box,
226
227
            reference_fn=reference_horizontal_flip_bounding_box,
            reference_inputs_fn=reference_inputs_flip_bounding_box,
228
229
230
231
232
        ),
        KernelInfo(
            F.horizontal_flip_mask,
            sample_inputs_fn=sample_inputs_horizontal_flip_mask,
        ),
233
234
235
236
        KernelInfo(
            F.horizontal_flip_video,
            sample_inputs_fn=sample_inputs_horizontal_flip_video,
        ),
237
238
239
240
    ]
)


241
242
243
def _get_resize_sizes(spatial_size):
    height, width = spatial_size
    length = max(spatial_size)
244
    yield length
245
246
247
248
249
    yield [length]
    yield (length,)
    new_height = int(height * 0.75)
    new_width = int(width * 1.25)
    yield [new_height, new_width]
250
251
252
    yield height, width


253
def sample_inputs_resize_image_tensor():
254
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=["RGB"], dtypes=[torch.float32]):
255
        for size in _get_resize_sizes(image_loader.spatial_size):
256
257
            yield ArgsKwargs(image_loader, size=size)

258
    for image_loader, interpolation in itertools.product(
259
        make_image_loaders(sizes=["random"], color_spaces=["RGB"]),
260
        [F.InterpolationMode.NEAREST, F.InterpolationMode.BILINEAR],
261
    ):
262
        yield ArgsKwargs(image_loader, size=[min(image_loader.spatial_size) + 1], interpolation=interpolation)
263
264

    yield ArgsKwargs(make_image_loader(size=(11, 17)), size=20, max_size=25)
265
266


267
268
269
270
271
272
273
def sample_inputs_resize_image_tensor_bicubic():
    for image_loader, interpolation in itertools.product(
        make_image_loaders(sizes=["random"], color_spaces=["RGB"]), [F.InterpolationMode.BICUBIC]
    ):
        yield ArgsKwargs(image_loader, size=[min(image_loader.spatial_size) + 1], interpolation=interpolation)


274
275
276
277
278
279
280
281
282
283
@pil_reference_wrapper
def reference_resize_image_tensor(*args, **kwargs):
    if not kwargs.pop("antialias", False) and kwargs.get("interpolation", F.InterpolationMode.BILINEAR) in {
        F.InterpolationMode.BILINEAR,
        F.InterpolationMode.BICUBIC,
    }:
        raise pytest.UsageError("Anti-aliasing is always active in PIL")
    return F.resize_image_pil(*args, **kwargs)


284
285
def reference_inputs_resize_image_tensor():
    for image_loader, interpolation in itertools.product(
286
        make_image_loaders_for_interpolation(),
287
288
        [
            F.InterpolationMode.NEAREST,
289
            F.InterpolationMode.NEAREST_EXACT,
290
291
292
293
            F.InterpolationMode.BILINEAR,
            F.InterpolationMode.BICUBIC,
        ],
    ):
294
        for size in _get_resize_sizes(image_loader.spatial_size):
295
296
297
298
299
300
301
302
303
304
            yield ArgsKwargs(
                image_loader,
                size=size,
                interpolation=interpolation,
                antialias=interpolation
                in {
                    F.InterpolationMode.BILINEAR,
                    F.InterpolationMode.BICUBIC,
                },
            )
305
306
307


def sample_inputs_resize_bounding_box():
308
    for bounding_box_loader in make_bounding_box_loaders():
309
        for size in _get_resize_sizes(bounding_box_loader.spatial_size):
310
            yield ArgsKwargs(bounding_box_loader, spatial_size=bounding_box_loader.spatial_size, size=size)
311
312


313
def sample_inputs_resize_mask():
314
315
    for mask_loader in make_mask_loaders(sizes=["random"], num_categories=["random"], num_objects=["random"]):
        yield ArgsKwargs(mask_loader, size=[min(mask_loader.shape[-2:]) + 1])
316
317


318
319
320
321
322
def sample_inputs_resize_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, size=[min(video_loader.shape[-2:]) + 1])


323
324
325
326
def reference_resize_bounding_box(bounding_box, *, spatial_size, size, max_size=None):
    old_height, old_width = spatial_size
    new_height, new_width = F._geometry._compute_resized_output_size(spatial_size, size=size, max_size=max_size)

327
328
329
    if (old_height, old_width) == (new_height, new_width):
        return bounding_box, (old_height, old_width)

330
331
332
333
334
    affine_matrix = np.array(
        [
            [new_width / old_width, 0, 0],
            [0, new_height / old_height, 0],
        ],
335
        dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
336
337
338
    )

    expected_bboxes = reference_affine_bounding_box_helper(
339
340
341
342
        bounding_box,
        format=bounding_box.format,
        spatial_size=(new_height, new_width),
        affine_matrix=affine_matrix,
343
344
345
346
347
    )
    return expected_bboxes, (new_height, new_width)


def reference_inputs_resize_bounding_box():
348
    for bounding_box_loader in make_bounding_box_loaders(extra_dims=((), (4,))):
349
350
351
352
        for size in _get_resize_sizes(bounding_box_loader.spatial_size):
            yield ArgsKwargs(bounding_box_loader, size=size, spatial_size=bounding_box_loader.spatial_size)


353
354
355
356
357
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.resize_image_tensor,
            sample_inputs_fn=sample_inputs_resize_image_tensor,
358
            reference_fn=reference_resize_image_tensor,
359
            reference_inputs_fn=reference_inputs_resize_image_tensor,
360
            float32_vs_uint8=True,
361
            closeness_kwargs={
362
                **pil_reference_pixel_difference(10, mae=True),
363
                **cuda_vs_cpu_pixel_difference(),
364
                **float32_vs_uint8_pixel_difference(1, mae=True),
365
            },
366
            test_marks=[
367
                xfail_jit_python_scalar_arg("size"),
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
            ],
        ),
        KernelInfo(
            F.resize_image_tensor,
            sample_inputs_fn=sample_inputs_resize_image_tensor_bicubic,
            reference_fn=reference_resize_image_tensor,
            reference_inputs_fn=reference_inputs_resize_image_tensor,
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(10, mae=True),
                **cuda_vs_cpu_pixel_difference(atol=30),
                **float32_vs_uint8_pixel_difference(1, mae=True),
            },
            test_marks=[
                xfail_jit_python_scalar_arg("size"),
383
            ],
384
385
386
387
        ),
        KernelInfo(
            F.resize_bounding_box,
            sample_inputs_fn=sample_inputs_resize_bounding_box,
388
389
            reference_fn=reference_resize_bounding_box,
            reference_inputs_fn=reference_inputs_resize_bounding_box,
390
391
392
            closeness_kwargs={
                (("TestKernels", "test_against_reference"), torch.int64, "cpu"): dict(atol=1, rtol=0),
            },
393
            test_marks=[
394
                xfail_jit_python_scalar_arg("size"),
395
            ],
396
        ),
397
398
399
        KernelInfo(
            F.resize_mask,
            sample_inputs_fn=sample_inputs_resize_mask,
400
            closeness_kwargs=pil_reference_pixel_difference(10),
401
            test_marks=[
402
                xfail_jit_python_scalar_arg("size"),
403
            ],
404
        ),
405
406
407
        KernelInfo(
            F.resize_video,
            sample_inputs_fn=sample_inputs_resize_video,
408
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
409
        ),
410
411
412
413
414
415
416
417
418
419
420
421
    ]
)


_AFFINE_KWARGS = combinations_grid(
    angle=[-87, 15, 90],
    translate=[(5, 5), (-5, -5)],
    scale=[0.77, 1.27],
    shear=[(12, 12), (0, 0)],
)


422
423
424
425
426
427
428
429
430
431
def _diversify_affine_kwargs_types(affine_kwargs):
    angle = affine_kwargs["angle"]
    for diverse_angle in [int(angle), float(angle)]:
        yield dict(affine_kwargs, angle=diverse_angle)

    shear = affine_kwargs["shear"]
    for diverse_shear in [tuple(shear), list(shear), int(shear[0]), float(shear[0])]:
        yield dict(affine_kwargs, shear=diverse_shear)


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
def _full_affine_params(**partial_params):
    partial_params.setdefault("angle", 0.0)
    partial_params.setdefault("translate", [0.0, 0.0])
    partial_params.setdefault("scale", 1.0)
    partial_params.setdefault("shear", [0.0, 0.0])
    partial_params.setdefault("center", None)
    return partial_params


_DIVERSE_AFFINE_PARAMS = [
    _full_affine_params(**{name: arg})
    for name, args in [
        ("angle", [1.0, 2]),
        ("translate", [[1.0, 0.5], [1, 2], (1.0, 0.5), (1, 2)]),
        ("scale", [0.5]),
        ("shear", [1.0, 2, [1.0], [2], (1.0,), (2,), [1.0, 0.5], [1, 2], (1.0, 0.5), (1, 2)]),
        ("center", [None, [1.0, 0.5], [1, 2], (1.0, 0.5), (1, 2)]),
    ]
    for arg in args
]


454
def get_fills(*, num_channels, dtype):
455
456
    yield None

457
458
459
460
    int_value = get_max_value(dtype)
    float_value = int_value / 2
    yield int_value
    yield float_value
461

462
463
464
    for vector_type in [list, tuple]:
        yield vector_type([int_value])
        yield vector_type([float_value])
465

466
467
468
        if num_channels > 1:
            yield vector_type(float_value * c / 10 for c in range(num_channels))
            yield vector_type(int_value if c % 2 == 0 else 0 for c in range(num_channels))
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483


def float32_vs_uint8_fill_adapter(other_args, kwargs):
    fill = kwargs.get("fill")
    if fill is None:
        return other_args, kwargs

    if isinstance(fill, (int, float)):
        fill /= 255
    else:
        fill = type(fill)(fill_ / 255 for fill_ in fill)

    return other_args, dict(kwargs, fill=fill)


484
def sample_inputs_affine_image_tensor():
485
    make_affine_image_loaders = functools.partial(
486
        make_image_loaders, sizes=["random"], color_spaces=["RGB"], dtypes=[torch.float32]
487
488
489
490
491
492
    )

    for image_loader, affine_params in itertools.product(make_affine_image_loaders(), _DIVERSE_AFFINE_PARAMS):
        yield ArgsKwargs(image_loader, **affine_params)

    for image_loader in make_affine_image_loaders():
493
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
494
495
496
497
            yield ArgsKwargs(image_loader, **_full_affine_params(), fill=fill)

    for image_loader, interpolation in itertools.product(
        make_affine_image_loaders(),
498
499
500
501
        [
            F.InterpolationMode.NEAREST,
            F.InterpolationMode.BILINEAR,
        ],
502
    ):
503
        yield ArgsKwargs(image_loader, **_full_affine_params(), fill=0)
504

505
506

def reference_inputs_affine_image_tensor():
507
    for image_loader, affine_kwargs in itertools.product(make_image_loaders_for_interpolation(), _AFFINE_KWARGS):
508
        yield ArgsKwargs(
509
            image_loader,
510
511
512
513
514
515
            interpolation=F.InterpolationMode.NEAREST,
            **affine_kwargs,
        )


def sample_inputs_affine_bounding_box():
516
    for bounding_box_loader, affine_params in itertools.product(
517
        make_bounding_box_loaders(formats=[datapoints.BoundingBoxFormat.XYXY]), _DIVERSE_AFFINE_PARAMS
518
519
520
521
    ):
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
522
            spatial_size=bounding_box_loader.spatial_size,
523
            **affine_params,
524
525
        )

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

def _compute_affine_matrix(angle, translate, scale, shear, center):
    rot = math.radians(angle)
    cx, cy = center
    tx, ty = translate
    sx, sy = [math.radians(sh_) for sh_ in shear]

    c_matrix = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
    t_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
    c_matrix_inv = np.linalg.inv(c_matrix)
    rs_matrix = np.array(
        [
            [scale * math.cos(rot), -scale * math.sin(rot), 0],
            [scale * math.sin(rot), scale * math.cos(rot), 0],
            [0, 0, 1],
        ]
    )
    shear_x_matrix = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
    shear_y_matrix = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
    rss_matrix = np.matmul(rs_matrix, np.matmul(shear_y_matrix, shear_x_matrix))
    true_matrix = np.matmul(t_matrix, np.matmul(c_matrix, np.matmul(rss_matrix, c_matrix_inv)))
    return true_matrix


550
551
def reference_affine_bounding_box_helper(bounding_box, *, format, spatial_size, affine_matrix):
    def transform(bbox, affine_matrix_, format_, spatial_size_):
552
553
        # Go to float before converting to prevent precision loss in case of CXCYWH -> XYXY and W or H is 1
        in_dtype = bbox.dtype
554
555
        if not torch.is_floating_point(bbox):
            bbox = bbox.float()
556
        bbox_xyxy = F.convert_format_bounding_box(
557
558
559
560
            bbox.as_subclass(torch.Tensor),
            old_format=format_,
            new_format=datapoints.BoundingBoxFormat.XYXY,
            inplace=True,
561
        )
562
563
564
565
566
567
568
569
        points = np.array(
            [
                [bbox_xyxy[0].item(), bbox_xyxy[1].item(), 1.0],
                [bbox_xyxy[2].item(), bbox_xyxy[1].item(), 1.0],
                [bbox_xyxy[0].item(), bbox_xyxy[3].item(), 1.0],
                [bbox_xyxy[2].item(), bbox_xyxy[3].item(), 1.0],
            ]
        )
570
        transformed_points = np.matmul(points, affine_matrix_.T)
571
572
        out_bbox = torch.tensor(
            [
573
574
575
576
                np.min(transformed_points[:, 0]).item(),
                np.min(transformed_points[:, 1]).item(),
                np.max(transformed_points[:, 0]).item(),
                np.max(transformed_points[:, 1]).item(),
577
            ],
578
            dtype=bbox_xyxy.dtype,
579
        )
580
        out_bbox = F.convert_format_bounding_box(
581
            out_bbox, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format_, inplace=True
582
        )
583
584
585
586
        # It is important to clamp before casting, especially for CXCYWH format, dtype=int64
        out_bbox = F.clamp_bounding_box(out_bbox, format=format_, spatial_size=spatial_size_)
        out_bbox = out_bbox.to(dtype=in_dtype)
        return out_bbox
587
588
589
590

    if bounding_box.ndim < 2:
        bounding_box = [bounding_box]

591
    expected_bboxes = [transform(bbox, affine_matrix, format, spatial_size) for bbox in bounding_box]
592
593
594
595
596
597
598
599
    if len(expected_bboxes) > 1:
        expected_bboxes = torch.stack(expected_bboxes)
    else:
        expected_bboxes = expected_bboxes[0]

    return expected_bboxes


600
601
602
603
604
605
606
def reference_affine_bounding_box(bounding_box, *, format, spatial_size, angle, translate, scale, shear, center=None):
    if center is None:
        center = [s * 0.5 for s in spatial_size[::-1]]

    affine_matrix = _compute_affine_matrix(angle, translate, scale, shear, center)
    affine_matrix = affine_matrix[:2, :]

607
608
609
    expected_bboxes = reference_affine_bounding_box_helper(
        bounding_box, format=format, spatial_size=spatial_size, affine_matrix=affine_matrix
    )
610
611
612
613

    return expected_bboxes


614
def reference_inputs_affine_bounding_box():
615
616
617
    for bounding_box_loader, affine_kwargs in itertools.product(
        make_bounding_box_loaders(extra_dims=[()]),
        _AFFINE_KWARGS,
618
619
620
621
    ):
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
622
            spatial_size=bounding_box_loader.spatial_size,
623
            **affine_kwargs,
624
625
626
        )


627
def sample_inputs_affine_mask():
628
629
    for mask_loader in make_mask_loaders(sizes=["random"], num_categories=["random"], num_objects=["random"]):
        yield ArgsKwargs(mask_loader, **_full_affine_params())
630

631

632
633
634
635
636
def sample_inputs_affine_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, **_full_affine_params())


637
638
639
640
641
642
643
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.affine_image_tensor,
            sample_inputs_fn=sample_inputs_affine_image_tensor,
            reference_fn=pil_reference_wrapper(F.affine_image_pil),
            reference_inputs_fn=reference_inputs_affine_image_tensor,
644
            float32_vs_uint8=True,
645
            closeness_kwargs=pil_reference_pixel_difference(10, mae=True),
646
647
            test_marks=[
                xfail_jit_python_scalar_arg("shear"),
648
                xfail_jit_python_scalar_arg("fill"),
649
            ],
650
651
652
653
654
655
        ),
        KernelInfo(
            F.affine_bounding_box,
            sample_inputs_fn=sample_inputs_affine_bounding_box,
            reference_fn=reference_affine_bounding_box,
            reference_inputs_fn=reference_inputs_affine_bounding_box,
656
            test_marks=[
657
                xfail_jit_python_scalar_arg("shear"),
658
            ],
659
        ),
660
661
        KernelInfo(
            F.affine_mask,
662
            sample_inputs_fn=sample_inputs_affine_mask,
663
664
665
            test_marks=[
                xfail_jit_python_scalar_arg("shear"),
            ],
666
        ),
667
668
669
670
        KernelInfo(
            F.affine_video,
            sample_inputs_fn=sample_inputs_affine_video,
        ),
671
672
    ]
)
673
674
675


def sample_inputs_convert_format_bounding_box():
676
    formats = list(datapoints.BoundingBoxFormat)
677
    for bounding_box_loader, new_format in itertools.product(make_bounding_box_loaders(formats=formats), formats):
678
        yield ArgsKwargs(bounding_box_loader, old_format=bounding_box_loader.format, new_format=new_format)
679
680


681
def reference_convert_format_bounding_box(bounding_box, old_format, new_format):
682
    return torchvision.ops.box_convert(
683
684
        bounding_box, in_fmt=old_format.name.lower(), out_fmt=new_format.name.lower()
    ).to(bounding_box.dtype)
685
686
687


def reference_inputs_convert_format_bounding_box():
688
    for args_kwargs in sample_inputs_convert_format_bounding_box():
689
690
        if len(args_kwargs.args[0].shape) == 2:
            yield args_kwargs
691
692
693
694
695
696
697
698


KERNEL_INFOS.append(
    KernelInfo(
        F.convert_format_bounding_box,
        sample_inputs_fn=sample_inputs_convert_format_bounding_box,
        reference_fn=reference_convert_format_bounding_box,
        reference_inputs_fn=reference_inputs_convert_format_bounding_box,
699
        logs_usage=True,
700
701
702
703
    ),
)


704
705
706
707
708
709
def sample_inputs_vertical_flip_image_tensor():
    for image_loader in make_image_loaders(sizes=["random"], dtypes=[torch.float32]):
        yield ArgsKwargs(image_loader)


def reference_inputs_vertical_flip_image_tensor():
710
    for image_loader in make_image_loaders(extra_dims=[()], dtypes=[torch.uint8]):
711
712
713
714
715
        yield ArgsKwargs(image_loader)


def sample_inputs_vertical_flip_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders(
716
        formats=[datapoints.BoundingBoxFormat.XYXY], dtypes=[torch.float32]
717
718
    ):
        yield ArgsKwargs(
719
            bounding_box_loader, format=bounding_box_loader.format, spatial_size=bounding_box_loader.spatial_size
720
721
722
723
724
725
726
727
        )


def sample_inputs_vertical_flip_mask():
    for image_loader in make_mask_loaders(sizes=["random"], dtypes=[torch.uint8]):
        yield ArgsKwargs(image_loader)


728
729
730
731
732
def sample_inputs_vertical_flip_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader)


733
734
735
736
737
738
def reference_vertical_flip_bounding_box(bounding_box, *, format, spatial_size):
    affine_matrix = np.array(
        [
            [1, 0, 0],
            [0, -1, spatial_size[0]],
        ],
739
        dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
740
741
    )

742
743
744
    expected_bboxes = reference_affine_bounding_box_helper(
        bounding_box, format=format, spatial_size=spatial_size, affine_matrix=affine_matrix
    )
745
746
747
748

    return expected_bboxes


749
750
751
752
753
754
755
756
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.vertical_flip_image_tensor,
            kernel_name="vertical_flip_image_tensor",
            sample_inputs_fn=sample_inputs_vertical_flip_image_tensor,
            reference_fn=pil_reference_wrapper(F.vertical_flip_image_pil),
            reference_inputs_fn=reference_inputs_vertical_flip_image_tensor,
757
            float32_vs_uint8=True,
758
759
760
761
        ),
        KernelInfo(
            F.vertical_flip_bounding_box,
            sample_inputs_fn=sample_inputs_vertical_flip_bounding_box,
762
763
            reference_fn=reference_vertical_flip_bounding_box,
            reference_inputs_fn=reference_inputs_flip_bounding_box,
764
765
766
767
768
        ),
        KernelInfo(
            F.vertical_flip_mask,
            sample_inputs_fn=sample_inputs_vertical_flip_mask,
        ),
769
770
771
772
        KernelInfo(
            F.vertical_flip_video,
            sample_inputs_fn=sample_inputs_vertical_flip_video,
        ),
773
774
775
776
777
778
779
    ]
)

_ROTATE_ANGLES = [-87, 15, 90]


def sample_inputs_rotate_image_tensor():
780
    make_rotate_image_loaders = functools.partial(
781
        make_image_loaders, sizes=["random"], color_spaces=["RGB"], dtypes=[torch.float32]
782
783
784
785
786
787
788
    )

    for image_loader in make_rotate_image_loaders():
        yield ArgsKwargs(image_loader, angle=15.0, expand=True)

    for image_loader, center in itertools.product(
        make_rotate_image_loaders(), [None, [1.0, 0.5], [1, 2], (1.0, 0.5), (1, 2)]
789
    ):
790
        yield ArgsKwargs(image_loader, angle=15.0, center=center)
791

792
    for image_loader in make_rotate_image_loaders():
793
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
794
795
796
797
798
799
800
            yield ArgsKwargs(image_loader, angle=15.0, fill=fill)

    for image_loader, interpolation in itertools.product(
        make_rotate_image_loaders(),
        [F.InterpolationMode.NEAREST, F.InterpolationMode.BILINEAR],
    ):
        yield ArgsKwargs(image_loader, angle=15.0, fill=0)
801
802
803


def reference_inputs_rotate_image_tensor():
804
    for image_loader, angle in itertools.product(make_image_loaders_for_interpolation(), _ROTATE_ANGLES):
805
806
807
808
809
810
811
812
        yield ArgsKwargs(image_loader, angle=angle)


def sample_inputs_rotate_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders():
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
813
            spatial_size=bounding_box_loader.spatial_size,
814
815
816
817
            angle=_ROTATE_ANGLES[0],
        )


818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
def reference_inputs_rotate_bounding_box():
    for bounding_box_loader, angle in itertools.product(
        make_bounding_box_loaders(extra_dims=((), (4,))), _ROTATE_ANGLES
    ):
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
            spatial_size=bounding_box_loader.spatial_size,
            angle=angle,
        )

    # TODO: add samples with expand=True and center


def reference_rotate_bounding_box(bounding_box, *, format, spatial_size, angle, expand=False, center=None):

    if center is None:
        center = [spatial_size[1] * 0.5, spatial_size[0] * 0.5]

    a = np.cos(angle * np.pi / 180.0)
    b = np.sin(angle * np.pi / 180.0)
    cx = center[0]
    cy = center[1]
    affine_matrix = np.array(
        [
            [a, b, cx - cx * a - b * cy],
            [-b, a, cy + cx * b - a * cy],
        ],
        dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
    )

    expected_bboxes = reference_affine_bounding_box_helper(
        bounding_box, format=format, spatial_size=spatial_size, affine_matrix=affine_matrix
    )
    return expected_bboxes, spatial_size


855
def sample_inputs_rotate_mask():
856
857
    for mask_loader in make_mask_loaders(sizes=["random"], num_categories=["random"], num_objects=["random"]):
        yield ArgsKwargs(mask_loader, angle=15.0)
858
859


860
861
862
863
864
def sample_inputs_rotate_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, angle=15.0)


865
866
867
868
869
870
871
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.rotate_image_tensor,
            sample_inputs_fn=sample_inputs_rotate_image_tensor,
            reference_fn=pil_reference_wrapper(F.rotate_image_pil),
            reference_inputs_fn=reference_inputs_rotate_image_tensor,
872
            float32_vs_uint8=True,
873
            closeness_kwargs=pil_reference_pixel_difference(1, mae=True),
874
            test_marks=[
875
                xfail_jit_python_scalar_arg("fill"),
876
            ],
877
878
879
880
        ),
        KernelInfo(
            F.rotate_bounding_box,
            sample_inputs_fn=sample_inputs_rotate_bounding_box,
881
882
            reference_fn=reference_rotate_bounding_box,
            reference_inputs_fn=reference_inputs_rotate_bounding_box,
883
            closeness_kwargs={
884
885
                **scripted_vs_eager_float64_tolerances("cpu", atol=1e-4, rtol=1e-4),
                **scripted_vs_eager_float64_tolerances("cuda", atol=1e-4, rtol=1e-4),
886
            },
887
888
889
890
891
        ),
        KernelInfo(
            F.rotate_mask,
            sample_inputs_fn=sample_inputs_rotate_mask,
        ),
892
893
894
895
        KernelInfo(
            F.rotate_video,
            sample_inputs_fn=sample_inputs_rotate_video,
        ),
896
897
898
899
900
901
902
    ]
)

_CROP_PARAMS = combinations_grid(top=[-8, 0, 9], left=[-8, 0, 9], height=[12, 20], width=[12, 20])


def sample_inputs_crop_image_tensor():
903
    for image_loader, params in itertools.product(
904
        make_image_loaders(sizes=[(16, 17)], color_spaces=["RGB"], dtypes=[torch.float32]),
905
906
907
908
909
910
911
912
        [
            dict(top=4, left=3, height=7, width=8),
            dict(top=-1, left=3, height=7, width=8),
            dict(top=4, left=-1, height=7, width=8),
            dict(top=4, left=3, height=17, width=8),
            dict(top=4, left=3, height=7, width=18),
        ],
    ):
913
914
915
916
        yield ArgsKwargs(image_loader, **params)


def reference_inputs_crop_image_tensor():
917
918
919
    for image_loader, params in itertools.product(
        make_image_loaders(extra_dims=[()], dtypes=[torch.uint8]), _CROP_PARAMS
    ):
920
921
922
923
924
925
926
        yield ArgsKwargs(image_loader, **params)


def sample_inputs_crop_bounding_box():
    for bounding_box_loader, params in itertools.product(
        make_bounding_box_loaders(), [_CROP_PARAMS[0], _CROP_PARAMS[-1]]
    ):
927
        yield ArgsKwargs(bounding_box_loader, format=bounding_box_loader.format, **params)
928
929
930


def sample_inputs_crop_mask():
931
932
    for mask_loader in make_mask_loaders(sizes=[(16, 17)], num_categories=["random"], num_objects=["random"]):
        yield ArgsKwargs(mask_loader, top=4, left=3, height=7, width=8)
933
934
935
936
937
938
939


def reference_inputs_crop_mask():
    for mask_loader, params in itertools.product(make_mask_loaders(extra_dims=[()], num_objects=[1]), _CROP_PARAMS):
        yield ArgsKwargs(mask_loader, **params)


940
941
942
943
944
def sample_inputs_crop_video():
    for video_loader in make_video_loaders(sizes=[(16, 17)], num_frames=["random"]):
        yield ArgsKwargs(video_loader, top=4, left=3, height=7, width=8)


945
946
947
948
949
950
def reference_crop_bounding_box(bounding_box, *, format, top, left, height, width):
    affine_matrix = np.array(
        [
            [1, 0, -left],
            [0, 1, -top],
        ],
951
        dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
952
953
    )

954
955
956
957
958
    spatial_size = (height, width)
    expected_bboxes = reference_affine_bounding_box_helper(
        bounding_box, format=format, spatial_size=spatial_size, affine_matrix=affine_matrix
    )
    return expected_bboxes, spatial_size
959
960
961
962
963
964
965
966
967


def reference_inputs_crop_bounding_box():
    for bounding_box_loader, params in itertools.product(
        make_bounding_box_loaders(extra_dims=((), (4,))), [_CROP_PARAMS[0], _CROP_PARAMS[-1]]
    ):
        yield ArgsKwargs(bounding_box_loader, format=bounding_box_loader.format, **params)


968
969
970
971
972
973
974
975
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.crop_image_tensor,
            kernel_name="crop_image_tensor",
            sample_inputs_fn=sample_inputs_crop_image_tensor,
            reference_fn=pil_reference_wrapper(F.crop_image_pil),
            reference_inputs_fn=reference_inputs_crop_image_tensor,
976
            float32_vs_uint8=True,
977
978
979
980
        ),
        KernelInfo(
            F.crop_bounding_box,
            sample_inputs_fn=sample_inputs_crop_bounding_box,
981
982
            reference_fn=reference_crop_bounding_box,
            reference_inputs_fn=reference_inputs_crop_bounding_box,
983
984
985
986
987
988
        ),
        KernelInfo(
            F.crop_mask,
            sample_inputs_fn=sample_inputs_crop_mask,
            reference_fn=pil_reference_wrapper(F.crop_image_pil),
            reference_inputs_fn=reference_inputs_crop_mask,
989
            float32_vs_uint8=True,
990
        ),
991
992
993
994
        KernelInfo(
            F.crop_video,
            sample_inputs_fn=sample_inputs_crop_video,
        ),
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
    ]
)

_RESIZED_CROP_PARAMS = combinations_grid(top=[-8, 9], left=[-8, 9], height=[12], width=[12], size=[(16, 18)])


def sample_inputs_resized_crop_image_tensor():
    for image_loader in make_image_loaders():
        yield ArgsKwargs(image_loader, **_RESIZED_CROP_PARAMS[0])


@pil_reference_wrapper
def reference_resized_crop_image_tensor(*args, **kwargs):
    if not kwargs.pop("antialias", False) and kwargs.get("interpolation", F.InterpolationMode.BILINEAR) in {
        F.InterpolationMode.BILINEAR,
        F.InterpolationMode.BICUBIC,
    }:
        raise pytest.UsageError("Anti-aliasing is always active in PIL")
    return F.resized_crop_image_pil(*args, **kwargs)


def reference_inputs_resized_crop_image_tensor():
    for image_loader, interpolation, params in itertools.product(
1018
        make_image_loaders_for_interpolation(),
1019
1020
        [
            F.InterpolationMode.NEAREST,
1021
            F.InterpolationMode.NEAREST_EXACT,
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
            F.InterpolationMode.BILINEAR,
            F.InterpolationMode.BICUBIC,
        ],
        _RESIZED_CROP_PARAMS,
    ):
        yield ArgsKwargs(
            image_loader,
            interpolation=interpolation,
            antialias=interpolation
            in {
                F.InterpolationMode.BILINEAR,
                F.InterpolationMode.BICUBIC,
            },
            **params,
        )


def sample_inputs_resized_crop_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders():
        yield ArgsKwargs(bounding_box_loader, format=bounding_box_loader.format, **_RESIZED_CROP_PARAMS[0])


def sample_inputs_resized_crop_mask():
    for mask_loader in make_mask_loaders():
        yield ArgsKwargs(mask_loader, **_RESIZED_CROP_PARAMS[0])


1049
1050
1051
1052
1053
def sample_inputs_resized_crop_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, **_RESIZED_CROP_PARAMS[0])


1054
1055
1056
1057
1058
1059
1060
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.resized_crop_image_tensor,
            sample_inputs_fn=sample_inputs_resized_crop_image_tensor,
            reference_fn=reference_resized_crop_image_tensor,
            reference_inputs_fn=reference_inputs_resized_crop_image_tensor,
1061
            float32_vs_uint8=True,
1062
            closeness_kwargs={
1063
                **cuda_vs_cpu_pixel_difference(),
1064
1065
                **pil_reference_pixel_difference(3, mae=True),
                **float32_vs_uint8_pixel_difference(3, mae=True),
1066
            },
1067
1068
1069
1070
1071
1072
1073
1074
1075
        ),
        KernelInfo(
            F.resized_crop_bounding_box,
            sample_inputs_fn=sample_inputs_resized_crop_bounding_box,
        ),
        KernelInfo(
            F.resized_crop_mask,
            sample_inputs_fn=sample_inputs_resized_crop_mask,
        ),
1076
1077
1078
        KernelInfo(
            F.resized_crop_video,
            sample_inputs_fn=sample_inputs_resized_crop_video,
1079
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
1080
        ),
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
    ]
)

_PAD_PARAMS = combinations_grid(
    padding=[[1], [1, 1], [1, 1, 2, 2]],
    padding_mode=["constant", "symmetric", "edge", "reflect"],
)


def sample_inputs_pad_image_tensor():
1091
    make_pad_image_loaders = functools.partial(
1092
        make_image_loaders, sizes=["random"], color_spaces=["RGB"], dtypes=[torch.float32]
1093
1094
1095
1096
1097
1098
1099
1100
1101
    )

    for image_loader, padding in itertools.product(
        make_pad_image_loaders(),
        [1, (1,), (1, 2), (1, 2, 3, 4), [1], [1, 2], [1, 2, 3, 4]],
    ):
        yield ArgsKwargs(image_loader, padding=padding)

    for image_loader in make_pad_image_loaders():
1102
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
            yield ArgsKwargs(image_loader, padding=[1], fill=fill)

    for image_loader, padding_mode in itertools.product(
        # We branch for non-constant padding and integer inputs
        make_pad_image_loaders(dtypes=[torch.uint8]),
        ["constant", "symmetric", "edge", "reflect"],
    ):
        yield ArgsKwargs(image_loader, padding=[1], padding_mode=padding_mode)

    # `torch.nn.functional.pad` does not support symmetric padding, and thus we have a custom implementation. Besides
    # negative padding, this is already handled by the inputs above.
    for image_loader in make_pad_image_loaders():
        yield ArgsKwargs(image_loader, padding=[-1], padding_mode="symmetric")
1116
1117
1118


def reference_inputs_pad_image_tensor():
1119
1120
1121
1122
1123
1124
1125
    for image_loader, params in itertools.product(
        make_image_loaders(extra_dims=[()], dtypes=[torch.uint8]), _PAD_PARAMS
    ):
        for fill in get_fills(
            num_channels=image_loader.num_channels,
            dtype=image_loader.dtype,
        ):
1126
1127
1128
1129
            # FIXME: PIL kernel doesn't support sequences of length 1 if the number of channels is larger. Shouldn't it?
            if isinstance(fill, (list, tuple)):
                continue

1130
1131
1132
1133
            yield ArgsKwargs(image_loader, fill=fill, **params)


def sample_inputs_pad_bounding_box():
1134
1135
1136
    for bounding_box_loader, padding in itertools.product(
        make_bounding_box_loaders(), [1, (1,), (1, 2), (1, 2, 3, 4), [1], [1, 2], [1, 2, 3, 4]]
    ):
1137
        yield ArgsKwargs(
1138
1139
            bounding_box_loader,
            format=bounding_box_loader.format,
1140
            spatial_size=bounding_box_loader.spatial_size,
1141
1142
            padding=padding,
            padding_mode="constant",
1143
        )
1144
1145
1146


def sample_inputs_pad_mask():
1147
1148
    for mask_loader in make_mask_loaders(sizes=["random"], num_categories=["random"], num_objects=["random"]):
        yield ArgsKwargs(mask_loader, padding=[1])
1149
1150
1151


def reference_inputs_pad_mask():
1152
1153
1154
1155
    for mask_loader, fill, params in itertools.product(
        make_mask_loaders(num_objects=[1], extra_dims=[()]), [None, 127], _PAD_PARAMS
    ):
        yield ArgsKwargs(mask_loader, fill=fill, **params)
1156
1157


1158
1159
1160
1161
1162
def sample_inputs_pad_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, padding=[1])


1163
1164
1165
1166
1167
1168
1169
1170
1171
def reference_pad_bounding_box(bounding_box, *, format, spatial_size, padding, padding_mode):

    left, right, top, bottom = _parse_pad_padding(padding)

    affine_matrix = np.array(
        [
            [1, 0, left],
            [0, 1, top],
        ],
1172
        dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
1173
1174
1175
1176
1177
    )

    height = spatial_size[0] + top + bottom
    width = spatial_size[1] + left + right

1178
1179
1180
    expected_bboxes = reference_affine_bounding_box_helper(
        bounding_box, format=format, spatial_size=(height, width), affine_matrix=affine_matrix
    )
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
    return expected_bboxes, (height, width)


def reference_inputs_pad_bounding_box():
    for bounding_box_loader, padding in itertools.product(
        make_bounding_box_loaders(extra_dims=((), (4,))), [1, (1,), (1, 2), (1, 2, 3, 4), [1], [1, 2], [1, 2, 3, 4]]
    ):
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
            spatial_size=bounding_box_loader.spatial_size,
            padding=padding,
            padding_mode="constant",
        )


1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
def pad_xfail_jit_fill_condition(args_kwargs):
    fill = args_kwargs.kwargs.get("fill")
    if not isinstance(fill, (list, tuple)):
        return False
    elif isinstance(fill, tuple):
        return True
    else:  # isinstance(fill, list):
        return all(isinstance(f, int) for f in fill)


1207
1208
1209
1210
1211
1212
1213
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.pad_image_tensor,
            sample_inputs_fn=sample_inputs_pad_image_tensor,
            reference_fn=pil_reference_wrapper(F.pad_image_pil),
            reference_inputs_fn=reference_inputs_pad_image_tensor,
1214
1215
            float32_vs_uint8=float32_vs_uint8_fill_adapter,
            closeness_kwargs=float32_vs_uint8_pixel_difference(),
1216
            test_marks=[
1217
1218
1219
1220
                xfail_jit_python_scalar_arg("padding"),
                xfail_jit(
                    "F.pad only supports vector fills for list of floats", condition=pad_xfail_jit_fill_condition
                ),
1221
            ],
1222
1223
1224
1225
        ),
        KernelInfo(
            F.pad_bounding_box,
            sample_inputs_fn=sample_inputs_pad_bounding_box,
1226
1227
            reference_fn=reference_pad_bounding_box,
            reference_inputs_fn=reference_inputs_pad_bounding_box,
1228
            test_marks=[
1229
                xfail_jit_python_scalar_arg("padding"),
1230
            ],
1231
1232
1233
1234
1235
1236
        ),
        KernelInfo(
            F.pad_mask,
            sample_inputs_fn=sample_inputs_pad_mask,
            reference_fn=pil_reference_wrapper(F.pad_image_pil),
            reference_inputs_fn=reference_inputs_pad_mask,
1237
            float32_vs_uint8=float32_vs_uint8_fill_adapter,
1238
        ),
1239
1240
1241
1242
        KernelInfo(
            F.pad_video,
            sample_inputs_fn=sample_inputs_pad_video,
        ),
1243
1244
1245
1246
1247
1248
1249
    ]
)

_PERSPECTIVE_COEFFS = [
    [1.2405, 0.1772, -6.9113, 0.0463, 1.251, -5.235, 0.00013, 0.0018],
    [0.7366, -0.11724, 1.45775, -0.15012, 0.73406, 2.6019, -0.0072, -0.0063],
]
1250
1251
_STARTPOINTS = [[0, 1], [2, 3], [4, 5], [6, 7]]
_ENDPOINTS = [[9, 8], [7, 6], [5, 4], [3, 2]]
1252
1253
1254


def sample_inputs_perspective_image_tensor():
1255
    for image_loader in make_image_loaders(sizes=["random"]):
1256
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
1257
1258
1259
1260
1261
            yield ArgsKwargs(
                image_loader, startpoints=None, endpoints=None, fill=fill, coefficients=_PERSPECTIVE_COEFFS[0]
            )

    yield ArgsKwargs(make_image_loader(), startpoints=_STARTPOINTS, endpoints=_ENDPOINTS)
1262
1263
1264


def reference_inputs_perspective_image_tensor():
1265
1266
1267
1268
1269
1270
1271
    for image_loader, coefficients, interpolation in itertools.product(
        make_image_loaders_for_interpolation(),
        _PERSPECTIVE_COEFFS,
        [
            F.InterpolationMode.NEAREST,
            F.InterpolationMode.BILINEAR,
        ],
1272
1273
    ):
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
1274
1275
1276
1277
            # FIXME: PIL kernel doesn't support sequences of length 1 if the number of channels is larger. Shouldn't it?
            if isinstance(fill, (list, tuple)):
                continue

1278
1279
1280
1281
1282
1283
1284
1285
            yield ArgsKwargs(
                image_loader,
                startpoints=None,
                endpoints=None,
                interpolation=interpolation,
                fill=fill,
                coefficients=coefficients,
            )
1286
1287
1288
1289
1290


def sample_inputs_perspective_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders():
        yield ArgsKwargs(
1291
1292
            bounding_box_loader,
            format=bounding_box_loader.format,
1293
            spatial_size=bounding_box_loader.spatial_size,
1294
1295
1296
            startpoints=None,
            endpoints=None,
            coefficients=_PERSPECTIVE_COEFFS[0],
1297
1298
        )

1299
    format = datapoints.BoundingBoxFormat.XYXY
1300
    loader = make_bounding_box_loader(format=format)
1301
    yield ArgsKwargs(
1302
        loader, format=format, spatial_size=loader.spatial_size, startpoints=_STARTPOINTS, endpoints=_ENDPOINTS
1303
1304
    )

1305
1306

def sample_inputs_perspective_mask():
1307
    for mask_loader in make_mask_loaders(sizes=["random"]):
1308
1309
1310
        yield ArgsKwargs(mask_loader, startpoints=None, endpoints=None, coefficients=_PERSPECTIVE_COEFFS[0])

    yield ArgsKwargs(make_detection_mask_loader(), startpoints=_STARTPOINTS, endpoints=_ENDPOINTS)
1311
1312
1313
1314
1315
1316


def reference_inputs_perspective_mask():
    for mask_loader, perspective_coeffs in itertools.product(
        make_mask_loaders(extra_dims=[()], num_objects=[1]), _PERSPECTIVE_COEFFS
    ):
1317
        yield ArgsKwargs(mask_loader, startpoints=None, endpoints=None, coefficients=perspective_coeffs)
1318
1319


1320
1321
def sample_inputs_perspective_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
1322
1323
1324
        yield ArgsKwargs(video_loader, startpoints=None, endpoints=None, coefficients=_PERSPECTIVE_COEFFS[0])

    yield ArgsKwargs(make_video_loader(), startpoints=_STARTPOINTS, endpoints=_ENDPOINTS)
1325
1326


1327
1328
1329
1330
1331
1332
1333
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.perspective_image_tensor,
            sample_inputs_fn=sample_inputs_perspective_image_tensor,
            reference_fn=pil_reference_wrapper(F.perspective_image_pil),
            reference_inputs_fn=reference_inputs_perspective_image_tensor,
1334
            float32_vs_uint8=float32_vs_uint8_fill_adapter,
1335
            closeness_kwargs={
1336
                **pil_reference_pixel_difference(2, mae=True),
1337
1338
                **cuda_vs_cpu_pixel_difference(),
                **float32_vs_uint8_pixel_difference(),
1339
1340
                **scripted_vs_eager_float64_tolerances("cpu", atol=1e-5, rtol=1e-5),
                **scripted_vs_eager_float64_tolerances("cuda", atol=1e-5, rtol=1e-5),
1341
            },
1342
            test_marks=[xfail_jit_python_scalar_arg("fill")],
1343
1344
1345
1346
        ),
        KernelInfo(
            F.perspective_bounding_box,
            sample_inputs_fn=sample_inputs_perspective_bounding_box,
1347
1348
1349
1350
            closeness_kwargs={
                **scripted_vs_eager_float64_tolerances("cpu", atol=1e-6, rtol=1e-6),
                **scripted_vs_eager_float64_tolerances("cuda", atol=1e-6, rtol=1e-6),
            },
1351
1352
1353
1354
1355
1356
        ),
        KernelInfo(
            F.perspective_mask,
            sample_inputs_fn=sample_inputs_perspective_mask,
            reference_fn=pil_reference_wrapper(F.perspective_image_pil),
            reference_inputs_fn=reference_inputs_perspective_mask,
1357
1358
1359
1360
            float32_vs_uint8=True,
            closeness_kwargs={
                (("TestKernels", "test_against_reference"), torch.uint8, "cpu"): dict(atol=10, rtol=0),
            },
1361
1362
1363
1364
        ),
        KernelInfo(
            F.perspective_video,
            sample_inputs_fn=sample_inputs_perspective_video,
1365
1366
            closeness_kwargs={
                **cuda_vs_cpu_pixel_difference(),
1367
1368
                **scripted_vs_eager_float64_tolerances("cpu", atol=1e-5, rtol=1e-5),
                **scripted_vs_eager_float64_tolerances("cuda", atol=1e-5, rtol=1e-5),
1369
            },
1370
1371
1372
1373
1374
        ),
    ]
)


1375
1376
def _get_elastic_displacement(spatial_size):
    return torch.rand(1, *spatial_size, 2)
1377
1378
1379


def sample_inputs_elastic_image_tensor():
1380
    for image_loader in make_image_loaders(sizes=["random"]):
1381
        displacement = _get_elastic_displacement(image_loader.spatial_size)
1382
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
1383
1384
1385
1386
1387
            yield ArgsKwargs(image_loader, displacement=displacement, fill=fill)


def reference_inputs_elastic_image_tensor():
    for image_loader, interpolation in itertools.product(
1388
        make_image_loaders_for_interpolation(),
1389
1390
1391
1392
1393
1394
        [
            F.InterpolationMode.NEAREST,
            F.InterpolationMode.BILINEAR,
            F.InterpolationMode.BICUBIC,
        ],
    ):
1395
        displacement = _get_elastic_displacement(image_loader.spatial_size)
1396
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
1397
1398
1399
1400
1401
            yield ArgsKwargs(image_loader, interpolation=interpolation, displacement=displacement, fill=fill)


def sample_inputs_elastic_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders():
1402
        displacement = _get_elastic_displacement(bounding_box_loader.spatial_size)
1403
1404
1405
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
1406
            spatial_size=bounding_box_loader.spatial_size,
1407
1408
1409
1410
1411
            displacement=displacement,
        )


def sample_inputs_elastic_mask():
1412
    for mask_loader in make_mask_loaders(sizes=["random"]):
1413
1414
1415
1416
        displacement = _get_elastic_displacement(mask_loader.shape[-2:])
        yield ArgsKwargs(mask_loader, displacement=displacement)


1417
1418
1419
1420
1421
1422
def sample_inputs_elastic_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        displacement = _get_elastic_displacement(video_loader.shape[-2:])
        yield ArgsKwargs(video_loader, displacement=displacement)


1423
1424
1425
1426
1427
1428
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.elastic_image_tensor,
            sample_inputs_fn=sample_inputs_elastic_image_tensor,
            reference_inputs_fn=reference_inputs_elastic_image_tensor,
1429
            float32_vs_uint8=float32_vs_uint8_fill_adapter,
1430
            closeness_kwargs={
1431
                **float32_vs_uint8_pixel_difference(6, mae=True),
1432
1433
                **cuda_vs_cpu_pixel_difference(),
            },
1434
            test_marks=[xfail_jit_python_scalar_arg("fill")],
1435
1436
1437
1438
1439
1440
1441
1442
        ),
        KernelInfo(
            F.elastic_bounding_box,
            sample_inputs_fn=sample_inputs_elastic_bounding_box,
        ),
        KernelInfo(
            F.elastic_mask,
            sample_inputs_fn=sample_inputs_elastic_mask,
1443
1444
1445
1446
        ),
        KernelInfo(
            F.elastic_video,
            sample_inputs_fn=sample_inputs_elastic_video,
1447
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
1448
1449
1450
1451
1452
        ),
    ]
)


1453
_CENTER_CROP_SPATIAL_SIZES = [(16, 16), (7, 33), (31, 9)]
1454
_CENTER_CROP_OUTPUT_SIZES = [[4, 3], [42, 70], [4], 3, (5, 2), (6,)]
1455
1456
1457
1458


def sample_inputs_center_crop_image_tensor():
    for image_loader, output_size in itertools.product(
1459
        make_image_loaders(sizes=[(16, 17)], color_spaces=["RGB"], dtypes=[torch.float32]),
1460
1461
1462
1463
1464
1465
        [
            # valid `output_size` types for which cropping is applied to both dimensions
            *[5, (4,), (2, 3), [6], [3, 2]],
            # `output_size`'s for which at least one dimension needs to be padded
            *[[4, 18], [17, 5], [17, 18]],
        ],
1466
1467
1468
1469
1470
1471
    ):
        yield ArgsKwargs(image_loader, output_size=output_size)


def reference_inputs_center_crop_image_tensor():
    for image_loader, output_size in itertools.product(
1472
1473
        make_image_loaders(sizes=_CENTER_CROP_SPATIAL_SIZES, extra_dims=[()], dtypes=[torch.uint8]),
        _CENTER_CROP_OUTPUT_SIZES,
1474
1475
1476
1477
1478
1479
1480
1481
1482
    ):
        yield ArgsKwargs(image_loader, output_size=output_size)


def sample_inputs_center_crop_bounding_box():
    for bounding_box_loader, output_size in itertools.product(make_bounding_box_loaders(), _CENTER_CROP_OUTPUT_SIZES):
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
1483
            spatial_size=bounding_box_loader.spatial_size,
1484
1485
1486
1487
1488
            output_size=output_size,
        )


def sample_inputs_center_crop_mask():
1489
1490
1491
    for mask_loader in make_mask_loaders(sizes=["random"], num_categories=["random"], num_objects=["random"]):
        height, width = mask_loader.shape[-2:]
        yield ArgsKwargs(mask_loader, output_size=(height // 2, width // 2))
1492
1493
1494
1495


def reference_inputs_center_crop_mask():
    for mask_loader, output_size in itertools.product(
1496
        make_mask_loaders(sizes=_CENTER_CROP_SPATIAL_SIZES, extra_dims=[()], num_objects=[1]), _CENTER_CROP_OUTPUT_SIZES
1497
1498
1499
1500
    ):
        yield ArgsKwargs(mask_loader, output_size=output_size)


1501
1502
1503
1504
1505
1506
def sample_inputs_center_crop_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        height, width = video_loader.shape[-2:]
        yield ArgsKwargs(video_loader, output_size=(height // 2, width // 2))


1507
1508
1509
1510
1511
1512
1513
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.center_crop_image_tensor,
            sample_inputs_fn=sample_inputs_center_crop_image_tensor,
            reference_fn=pil_reference_wrapper(F.center_crop_image_pil),
            reference_inputs_fn=reference_inputs_center_crop_image_tensor,
1514
            float32_vs_uint8=True,
1515
            test_marks=[
1516
                xfail_jit_python_scalar_arg("output_size"),
1517
            ],
1518
1519
1520
1521
        ),
        KernelInfo(
            F.center_crop_bounding_box,
            sample_inputs_fn=sample_inputs_center_crop_bounding_box,
1522
            test_marks=[
1523
                xfail_jit_python_scalar_arg("output_size"),
1524
            ],
1525
1526
1527
1528
1529
1530
        ),
        KernelInfo(
            F.center_crop_mask,
            sample_inputs_fn=sample_inputs_center_crop_mask,
            reference_fn=pil_reference_wrapper(F.center_crop_image_pil),
            reference_inputs_fn=reference_inputs_center_crop_mask,
1531
            float32_vs_uint8=True,
1532
            test_marks=[
1533
                xfail_jit_python_scalar_arg("output_size"),
1534
            ],
1535
        ),
1536
1537
1538
1539
        KernelInfo(
            F.center_crop_video,
            sample_inputs_fn=sample_inputs_center_crop_video,
        ),
1540
1541
1542
1543
1544
    ]
)


def sample_inputs_gaussian_blur_image_tensor():
1545
    make_gaussian_blur_image_loaders = functools.partial(make_image_loaders, sizes=[(7, 33)], color_spaces=["RGB"])
1546
1547
1548
1549
1550
1551

    for image_loader, kernel_size in itertools.product(make_gaussian_blur_image_loaders(), [5, (3, 3), [3, 3]]):
        yield ArgsKwargs(image_loader, kernel_size=kernel_size)

    for image_loader, sigma in itertools.product(
        make_gaussian_blur_image_loaders(), [None, (3.0, 3.0), [2.0, 2.0], 4.0, [1.5], (3.14,)]
1552
    ):
1553
        yield ArgsKwargs(image_loader, kernel_size=5, sigma=sigma)
1554
1555


1556
def sample_inputs_gaussian_blur_video():
1557
    for video_loader in make_video_loaders(sizes=[(7, 33)], num_frames=[5]):
1558
1559
1560
1561
1562
1563
1564
1565
        yield ArgsKwargs(video_loader, kernel_size=[3, 3])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.gaussian_blur_image_tensor,
            sample_inputs_fn=sample_inputs_gaussian_blur_image_tensor,
1566
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
1567
1568
1569
1570
1571
1572
1573
1574
            test_marks=[
                xfail_jit_python_scalar_arg("kernel_size"),
                xfail_jit_python_scalar_arg("sigma"),
            ],
        ),
        KernelInfo(
            F.gaussian_blur_video,
            sample_inputs_fn=sample_inputs_gaussian_blur_video,
1575
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
1576
1577
        ),
    ]
1578
1579
1580
1581
)


def sample_inputs_equalize_image_tensor():
1582
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
1583
1584
1585
1586
        yield ArgsKwargs(image_loader)


def reference_inputs_equalize_image_tensor():
1587
1588
1589
    # We are not using `make_image_loaders` here since that uniformly samples the values over the whole value range.
    # Since the whole point of this kernel is to transform an arbitrary distribution of values into a uniform one,
    # the information gain is low if we already provide something really close to the expected value.
1590
    def make_uniform_band_image(shape, dtype, device, *, low_factor, high_factor, memory_format):
1591
1592
1593
1594
1595
1596
1597
        if dtype.is_floating_point:
            low = low_factor
            high = high_factor
        else:
            max_value = torch.iinfo(dtype).max
            low = int(low_factor * max_value)
            high = int(high_factor * max_value)
1598
1599
1600
        return torch.testing.make_tensor(shape, dtype=dtype, device=device, low=low, high=high).to(
            memory_format=memory_format, copy=True
        )
1601

1602
    def make_beta_distributed_image(shape, dtype, device, *, alpha, beta, memory_format):
1603
1604
1605
        image = torch.distributions.Beta(alpha, beta).sample(shape)
        if not dtype.is_floating_point:
            image.mul_(torch.iinfo(dtype).max).round_()
1606
        return image.to(dtype=dtype, device=device, memory_format=memory_format, copy=True)
1607

1608
    spatial_size = (256, 256)
1609
    for dtype, color_space, fn in itertools.product(
1610
        [torch.uint8],
1611
        ["GRAY", "RGB"],
1612
        [
1613
1614
            lambda shape, dtype, device, memory_format: torch.zeros(shape, dtype=dtype, device=device).to(
                memory_format=memory_format, copy=True
1615
            ),
1616
1617
1618
            lambda shape, dtype, device, memory_format: torch.full(
                shape, 1.0 if dtype.is_floating_point else torch.iinfo(dtype).max, dtype=dtype, device=device
            ).to(memory_format=memory_format, copy=True),
1619
            *[
1620
1621
1622
1623
1624
                functools.partial(make_uniform_band_image, low_factor=low_factor, high_factor=high_factor)
                for low_factor, high_factor in [
                    (0.0, 0.25),
                    (0.25, 0.75),
                    (0.75, 1.0),
1625
1626
1627
                ]
            ],
            *[
1628
                functools.partial(make_beta_distributed_image, alpha=alpha, beta=beta)
1629
1630
1631
1632
1633
1634
1635
1636
                for alpha, beta in [
                    (0.5, 0.5),
                    (2, 2),
                    (2, 5),
                    (5, 2),
                ]
            ],
        ],
1637
    ):
1638
        image_loader = ImageLoader(fn, shape=(get_num_channels(color_space), *spatial_size), dtype=dtype)
1639
1640
1641
        yield ArgsKwargs(image_loader)


1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
def sample_inputs_equalize_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.equalize_image_tensor,
            kernel_name="equalize_image_tensor",
            sample_inputs_fn=sample_inputs_equalize_image_tensor,
            reference_fn=pil_reference_wrapper(F.equalize_image_pil),
1654
            float32_vs_uint8=True,
1655
1656
1657
1658
1659
1660
1661
            reference_inputs_fn=reference_inputs_equalize_image_tensor,
        ),
        KernelInfo(
            F.equalize_video,
            sample_inputs_fn=sample_inputs_equalize_video,
        ),
    ]
1662
1663
1664
1665
)


def sample_inputs_invert_image_tensor():
1666
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
1667
1668
1669
1670
        yield ArgsKwargs(image_loader)


def reference_inputs_invert_image_tensor():
1671
    for image_loader in make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]):
1672
1673
1674
        yield ArgsKwargs(image_loader)


1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
def sample_inputs_invert_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.invert_image_tensor,
            kernel_name="invert_image_tensor",
            sample_inputs_fn=sample_inputs_invert_image_tensor,
            reference_fn=pil_reference_wrapper(F.invert_image_pil),
            reference_inputs_fn=reference_inputs_invert_image_tensor,
1688
            float32_vs_uint8=True,
1689
1690
1691
1692
1693
1694
        ),
        KernelInfo(
            F.invert_video,
            sample_inputs_fn=sample_inputs_invert_video,
        ),
    ]
1695
1696
1697
1698
1699
1700
1701
)


_POSTERIZE_BITS = [1, 4, 8]


def sample_inputs_posterize_image_tensor():
1702
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
1703
1704
1705
1706
1707
        yield ArgsKwargs(image_loader, bits=_POSTERIZE_BITS[0])


def reference_inputs_posterize_image_tensor():
    for image_loader, bits in itertools.product(
1708
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1709
1710
1711
1712
1713
        _POSTERIZE_BITS,
    ):
        yield ArgsKwargs(image_loader, bits=bits)


1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
def sample_inputs_posterize_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, bits=_POSTERIZE_BITS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.posterize_image_tensor,
            kernel_name="posterize_image_tensor",
            sample_inputs_fn=sample_inputs_posterize_image_tensor,
            reference_fn=pil_reference_wrapper(F.posterize_image_pil),
            reference_inputs_fn=reference_inputs_posterize_image_tensor,
1727
1728
            float32_vs_uint8=True,
            closeness_kwargs=float32_vs_uint8_pixel_difference(),
1729
1730
1731
1732
1733
1734
        ),
        KernelInfo(
            F.posterize_video,
            sample_inputs_fn=sample_inputs_posterize_video,
        ),
    ]
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
)


def _get_solarize_thresholds(dtype):
    for factor in [0.1, 0.5]:
        max_value = get_max_value(dtype)
        yield (float if dtype.is_floating_point else int)(max_value * factor)


def sample_inputs_solarize_image_tensor():
1745
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
1746
1747
1748
1749
        yield ArgsKwargs(image_loader, threshold=next(_get_solarize_thresholds(image_loader.dtype)))


def reference_inputs_solarize_image_tensor():
1750
    for image_loader in make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]):
1751
1752
1753
1754
        for threshold in _get_solarize_thresholds(image_loader.dtype):
            yield ArgsKwargs(image_loader, threshold=threshold)


1755
1756
1757
1758
def uint8_to_float32_threshold_adapter(other_args, kwargs):
    return other_args, dict(threshold=kwargs["threshold"] / 255)


1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
def sample_inputs_solarize_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, threshold=next(_get_solarize_thresholds(video_loader.dtype)))


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.solarize_image_tensor,
            kernel_name="solarize_image_tensor",
            sample_inputs_fn=sample_inputs_solarize_image_tensor,
            reference_fn=pil_reference_wrapper(F.solarize_image_pil),
            reference_inputs_fn=reference_inputs_solarize_image_tensor,
1772
1773
            float32_vs_uint8=uint8_to_float32_threshold_adapter,
            closeness_kwargs=float32_vs_uint8_pixel_difference(),
1774
1775
1776
1777
1778
1779
        ),
        KernelInfo(
            F.solarize_video,
            sample_inputs_fn=sample_inputs_solarize_video,
        ),
    ]
1780
1781
1782
1783
)


def sample_inputs_autocontrast_image_tensor():
1784
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
1785
1786
1787
1788
        yield ArgsKwargs(image_loader)


def reference_inputs_autocontrast_image_tensor():
1789
    for image_loader in make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]):
1790
1791
1792
        yield ArgsKwargs(image_loader)


1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
def sample_inputs_autocontrast_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.autocontrast_image_tensor,
            kernel_name="autocontrast_image_tensor",
            sample_inputs_fn=sample_inputs_autocontrast_image_tensor,
            reference_fn=pil_reference_wrapper(F.autocontrast_image_pil),
            reference_inputs_fn=reference_inputs_autocontrast_image_tensor,
1806
1807
1808
1809
1810
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(),
                **float32_vs_uint8_pixel_difference(),
            },
1811
1812
1813
1814
1815
1816
        ),
        KernelInfo(
            F.autocontrast_video,
            sample_inputs_fn=sample_inputs_autocontrast_video,
        ),
    ]
1817
1818
1819
1820
1821
1822
1823
1824
)

_ADJUST_SHARPNESS_FACTORS = [0.1, 0.5]


def sample_inputs_adjust_sharpness_image_tensor():
    for image_loader in make_image_loaders(
        sizes=["random", (2, 2)],
1825
        color_spaces=("GRAY", "RGB"),
1826
1827
1828
1829
1830
1831
    ):
        yield ArgsKwargs(image_loader, sharpness_factor=_ADJUST_SHARPNESS_FACTORS[0])


def reference_inputs_adjust_sharpness_image_tensor():
    for image_loader, sharpness_factor in itertools.product(
1832
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1833
1834
1835
1836
1837
        _ADJUST_SHARPNESS_FACTORS,
    ):
        yield ArgsKwargs(image_loader, sharpness_factor=sharpness_factor)


1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
def sample_inputs_adjust_sharpness_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, sharpness_factor=_ADJUST_SHARPNESS_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_sharpness_image_tensor,
            kernel_name="adjust_sharpness_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_sharpness_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_sharpness_image_pil),
            reference_inputs_fn=reference_inputs_adjust_sharpness_image_tensor,
1851
1852
            float32_vs_uint8=True,
            closeness_kwargs=float32_vs_uint8_pixel_difference(2),
1853
1854
1855
1856
1857
1858
        ),
        KernelInfo(
            F.adjust_sharpness_video,
            sample_inputs_fn=sample_inputs_adjust_sharpness_video,
        ),
    ]
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
)


def sample_inputs_erase_image_tensor():
    for image_loader in make_image_loaders(sizes=["random"]):
        # FIXME: make the parameters more diverse
        h, w = 6, 7
        v = torch.rand(image_loader.num_channels, h, w)
        yield ArgsKwargs(image_loader, i=1, j=2, h=h, w=w, v=v)


1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
def sample_inputs_erase_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        # FIXME: make the parameters more diverse
        h, w = 6, 7
        v = torch.rand(video_loader.num_channels, h, w)
        yield ArgsKwargs(video_loader, i=1, j=2, h=h, w=w, v=v)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.erase_image_tensor,
            kernel_name="erase_image_tensor",
            sample_inputs_fn=sample_inputs_erase_image_tensor,
        ),
        KernelInfo(
            F.erase_video,
            sample_inputs_fn=sample_inputs_erase_video,
        ),
    ]
1890
)
1891
1892
1893
1894
1895

_ADJUST_BRIGHTNESS_FACTORS = [0.1, 0.5]


def sample_inputs_adjust_brightness_image_tensor():
1896
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
1897
1898
1899
1900
1901
        yield ArgsKwargs(image_loader, brightness_factor=_ADJUST_BRIGHTNESS_FACTORS[0])


def reference_inputs_adjust_brightness_image_tensor():
    for image_loader, brightness_factor in itertools.product(
1902
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1903
1904
1905
1906
1907
        _ADJUST_BRIGHTNESS_FACTORS,
    ):
        yield ArgsKwargs(image_loader, brightness_factor=brightness_factor)


1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
def sample_inputs_adjust_brightness_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, brightness_factor=_ADJUST_BRIGHTNESS_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_brightness_image_tensor,
            kernel_name="adjust_brightness_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_brightness_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_brightness_image_pil),
            reference_inputs_fn=reference_inputs_adjust_brightness_image_tensor,
1921
1922
            float32_vs_uint8=True,
            closeness_kwargs=float32_vs_uint8_pixel_difference(),
1923
1924
1925
1926
1927
1928
        ),
        KernelInfo(
            F.adjust_brightness_video,
            sample_inputs_fn=sample_inputs_adjust_brightness_video,
        ),
    ]
1929
1930
1931
1932
1933
1934
1935
)


_ADJUST_CONTRAST_FACTORS = [0.1, 0.5]


def sample_inputs_adjust_contrast_image_tensor():
1936
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
1937
1938
1939
1940
1941
        yield ArgsKwargs(image_loader, contrast_factor=_ADJUST_CONTRAST_FACTORS[0])


def reference_inputs_adjust_contrast_image_tensor():
    for image_loader, contrast_factor in itertools.product(
1942
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1943
1944
1945
1946
1947
        _ADJUST_CONTRAST_FACTORS,
    ):
        yield ArgsKwargs(image_loader, contrast_factor=contrast_factor)


1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
def sample_inputs_adjust_contrast_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, contrast_factor=_ADJUST_CONTRAST_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_contrast_image_tensor,
            kernel_name="adjust_contrast_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_contrast_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_contrast_image_pil),
            reference_inputs_fn=reference_inputs_adjust_contrast_image_tensor,
1961
1962
1963
1964
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(),
                **float32_vs_uint8_pixel_difference(2),
1965
                **cuda_vs_cpu_pixel_difference(),
1966
                (("TestKernels", "test_against_reference"), torch.uint8, "cpu"): pixel_difference_closeness_kwargs(1),
1967
            },
1968
1969
1970
1971
        ),
        KernelInfo(
            F.adjust_contrast_video,
            sample_inputs_fn=sample_inputs_adjust_contrast_video,
1972
1973
1974
1975
            closeness_kwargs={
                **cuda_vs_cpu_pixel_difference(),
                (("TestKernels", "test_against_reference"), torch.uint8, "cpu"): pixel_difference_closeness_kwargs(1),
            },
1976
1977
        ),
    ]
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
)

_ADJUST_GAMMA_GAMMAS_GAINS = [
    (0.5, 2.0),
    (0.0, 1.0),
]


def sample_inputs_adjust_gamma_image_tensor():
    gamma, gain = _ADJUST_GAMMA_GAMMAS_GAINS[0]
1988
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
1989
1990
1991
1992
1993
        yield ArgsKwargs(image_loader, gamma=gamma, gain=gain)


def reference_inputs_adjust_gamma_image_tensor():
    for image_loader, (gamma, gain) in itertools.product(
1994
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1995
1996
1997
1998
1999
        _ADJUST_GAMMA_GAMMAS_GAINS,
    ):
        yield ArgsKwargs(image_loader, gamma=gamma, gain=gain)


2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
def sample_inputs_adjust_gamma_video():
    gamma, gain = _ADJUST_GAMMA_GAMMAS_GAINS[0]
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, gamma=gamma, gain=gain)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_gamma_image_tensor,
            kernel_name="adjust_gamma_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_gamma_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_gamma_image_pil),
            reference_inputs_fn=reference_inputs_adjust_gamma_image_tensor,
2014
2015
2016
2017
2018
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(),
                **float32_vs_uint8_pixel_difference(),
            },
2019
2020
2021
2022
2023
2024
        ),
        KernelInfo(
            F.adjust_gamma_video,
            sample_inputs_fn=sample_inputs_adjust_gamma_video,
        ),
    ]
2025
2026
2027
2028
2029
2030
2031
)


_ADJUST_HUE_FACTORS = [-0.1, 0.5]


def sample_inputs_adjust_hue_image_tensor():
2032
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
2033
2034
2035
2036
2037
        yield ArgsKwargs(image_loader, hue_factor=_ADJUST_HUE_FACTORS[0])


def reference_inputs_adjust_hue_image_tensor():
    for image_loader, hue_factor in itertools.product(
2038
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
2039
2040
2041
2042
2043
        _ADJUST_HUE_FACTORS,
    ):
        yield ArgsKwargs(image_loader, hue_factor=hue_factor)


2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
def sample_inputs_adjust_hue_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, hue_factor=_ADJUST_HUE_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_hue_image_tensor,
            kernel_name="adjust_hue_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_hue_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_hue_image_pil),
            reference_inputs_fn=reference_inputs_adjust_hue_image_tensor,
2057
2058
            float32_vs_uint8=True,
            closeness_kwargs={
2059
                **pil_reference_pixel_difference(2, mae=True),
2060
2061
                **float32_vs_uint8_pixel_difference(),
            },
2062
2063
2064
2065
2066
2067
        ),
        KernelInfo(
            F.adjust_hue_video,
            sample_inputs_fn=sample_inputs_adjust_hue_video,
        ),
    ]
2068
2069
2070
2071
2072
2073
)

_ADJUST_SATURATION_FACTORS = [0.1, 0.5]


def sample_inputs_adjust_saturation_image_tensor():
2074
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
2075
2076
2077
2078
2079
        yield ArgsKwargs(image_loader, saturation_factor=_ADJUST_SATURATION_FACTORS[0])


def reference_inputs_adjust_saturation_image_tensor():
    for image_loader, saturation_factor in itertools.product(
2080
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
2081
2082
2083
2084
2085
        _ADJUST_SATURATION_FACTORS,
    ):
        yield ArgsKwargs(image_loader, saturation_factor=saturation_factor)


2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
def sample_inputs_adjust_saturation_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, saturation_factor=_ADJUST_SATURATION_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_saturation_image_tensor,
            kernel_name="adjust_saturation_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_saturation_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_saturation_image_pil),
            reference_inputs_fn=reference_inputs_adjust_saturation_image_tensor,
2099
2100
2101
2102
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(),
                **float32_vs_uint8_pixel_difference(2),
2103
                **cuda_vs_cpu_pixel_difference(),
2104
            },
2105
2106
2107
2108
        ),
        KernelInfo(
            F.adjust_saturation_video,
            sample_inputs_fn=sample_inputs_adjust_saturation_video,
2109
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
2110
2111
        ),
    ]
2112
2113
2114
2115
2116
2117
)


def sample_inputs_clamp_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders():
        yield ArgsKwargs(
2118
            bounding_box_loader,
2119
2120
            format=bounding_box_loader.format,
            spatial_size=bounding_box_loader.spatial_size,
2121
2122
2123
2124
2125
2126
2127
        )


KERNEL_INFOS.append(
    KernelInfo(
        F.clamp_bounding_box,
        sample_inputs_fn=sample_inputs_clamp_bounding_box,
2128
        logs_usage=True,
2129
2130
2131
2132
2133
2134
    )
)

_FIVE_TEN_CROP_SIZES = [7, (6,), [5], (6, 5), [7, 6]]


2135
def _get_five_ten_crop_spatial_size(size):
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
    if isinstance(size, int):
        crop_height = crop_width = size
    elif len(size) == 1:
        crop_height = crop_width = size[0]
    else:
        crop_height, crop_width = size
    return 2 * crop_height, 2 * crop_width


def sample_inputs_five_crop_image_tensor():
    for size in _FIVE_TEN_CROP_SIZES:
2147
        for image_loader in make_image_loaders(
2148
            sizes=[_get_five_ten_crop_spatial_size(size)],
2149
            color_spaces=["RGB"],
2150
            dtypes=[torch.float32],
2151
        ):
2152
2153
2154
2155
2156
            yield ArgsKwargs(image_loader, size=size)


def reference_inputs_five_crop_image_tensor():
    for size in _FIVE_TEN_CROP_SIZES:
2157
2158
2159
        for image_loader in make_image_loaders(
            sizes=[_get_five_ten_crop_spatial_size(size)], extra_dims=[()], dtypes=[torch.uint8]
        ):
2160
2161
2162
            yield ArgsKwargs(image_loader, size=size)


2163
2164
2165
2166
2167
2168
def sample_inputs_five_crop_video():
    size = _FIVE_TEN_CROP_SIZES[0]
    for video_loader in make_video_loaders(sizes=[_get_five_ten_crop_spatial_size(size)]):
        yield ArgsKwargs(video_loader, size=size)


2169
2170
def sample_inputs_ten_crop_image_tensor():
    for size, vertical_flip in itertools.product(_FIVE_TEN_CROP_SIZES, [False, True]):
2171
        for image_loader in make_image_loaders(
2172
            sizes=[_get_five_ten_crop_spatial_size(size)],
2173
            color_spaces=["RGB"],
2174
            dtypes=[torch.float32],
2175
        ):
2176
2177
2178
2179
2180
            yield ArgsKwargs(image_loader, size=size, vertical_flip=vertical_flip)


def reference_inputs_ten_crop_image_tensor():
    for size, vertical_flip in itertools.product(_FIVE_TEN_CROP_SIZES, [False, True]):
2181
2182
2183
        for image_loader in make_image_loaders(
            sizes=[_get_five_ten_crop_spatial_size(size)], extra_dims=[()], dtypes=[torch.uint8]
        ):
2184
2185
2186
            yield ArgsKwargs(image_loader, size=size, vertical_flip=vertical_flip)


2187
2188
2189
2190
2191
2192
def sample_inputs_ten_crop_video():
    size = _FIVE_TEN_CROP_SIZES[0]
    for video_loader in make_video_loaders(sizes=[_get_five_ten_crop_spatial_size(size)]):
        yield ArgsKwargs(video_loader, size=size)


2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
def multi_crop_pil_reference_wrapper(pil_kernel):
    def wrapper(input_tensor, *other_args, **kwargs):
        output = pil_reference_wrapper(pil_kernel)(input_tensor, *other_args, **kwargs)
        return type(output)(
            F.convert_dtype_image_tensor(F.to_image_tensor(output_pil), dtype=input_tensor.dtype)
            for output_pil in output
        )

    return wrapper


2204
2205
2206
2207
2208
_common_five_ten_crop_marks = [
    xfail_jit_python_scalar_arg("size"),
    mark_framework_limitation(("TestKernels", "test_batched_vs_single"), "Custom batching needed."),
]

2209
2210
2211
2212
2213
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.five_crop_image_tensor,
            sample_inputs_fn=sample_inputs_five_crop_image_tensor,
2214
            reference_fn=multi_crop_pil_reference_wrapper(F.five_crop_image_pil),
2215
            reference_inputs_fn=reference_inputs_five_crop_image_tensor,
2216
            test_marks=_common_five_ten_crop_marks,
2217
        ),
2218
2219
2220
2221
2222
        KernelInfo(
            F.five_crop_video,
            sample_inputs_fn=sample_inputs_five_crop_video,
            test_marks=_common_five_ten_crop_marks,
        ),
2223
2224
2225
        KernelInfo(
            F.ten_crop_image_tensor,
            sample_inputs_fn=sample_inputs_ten_crop_image_tensor,
2226
            reference_fn=multi_crop_pil_reference_wrapper(F.ten_crop_image_pil),
2227
            reference_inputs_fn=reference_inputs_ten_crop_image_tensor,
2228
            test_marks=_common_five_ten_crop_marks,
2229
        ),
2230
2231
2232
2233
2234
        KernelInfo(
            F.ten_crop_video,
            sample_inputs_fn=sample_inputs_ten_crop_video,
            test_marks=_common_five_ten_crop_marks,
        ),
2235
2236
2237
2238
2239
2240
    ]
)

_NORMALIZE_MEANS_STDS = [
    ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
    ([0.0, 0.0, 0.0], [1.0, 1.0, 1.0]),
2241
    (0.5, 2.0),
2242
2243
2244
2245
2246
]


def sample_inputs_normalize_image_tensor():
    for image_loader, (mean, std) in itertools.product(
2247
        make_image_loaders(sizes=["random"], color_spaces=["RGB"], dtypes=[torch.float32]),
2248
2249
2250
2251
2252
        _NORMALIZE_MEANS_STDS,
    ):
        yield ArgsKwargs(image_loader, mean=mean, std=std)


2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
def reference_normalize_image_tensor(image, mean, std, inplace=False):
    mean = torch.tensor(mean).view(-1, 1, 1)
    std = torch.tensor(std).view(-1, 1, 1)

    sub = torch.Tensor.sub_ if inplace else torch.Tensor.sub
    return sub(image, mean).div_(std)


def reference_inputs_normalize_image_tensor():
    yield ArgsKwargs(
2263
        make_image_loader(size=(32, 32), color_space="RGB", extra_dims=[1]),
2264
2265
2266
2267
2268
        mean=[0.5, 0.5, 0.5],
        std=[1.0, 1.0, 1.0],
    )


2269
2270
2271
def sample_inputs_normalize_video():
    mean, std = _NORMALIZE_MEANS_STDS[0]
    for video_loader in make_video_loaders(
2272
        sizes=["random"], color_spaces=["RGB"], num_frames=["random"], dtypes=[torch.float32]
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
    ):
        yield ArgsKwargs(video_loader, mean=mean, std=std)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.normalize_image_tensor,
            kernel_name="normalize_image_tensor",
            sample_inputs_fn=sample_inputs_normalize_image_tensor,
2283
2284
            reference_fn=reference_normalize_image_tensor,
            reference_inputs_fn=reference_inputs_normalize_image_tensor,
2285
2286
2287
2288
            test_marks=[
                xfail_jit_python_scalar_arg("mean"),
                xfail_jit_python_scalar_arg("std"),
            ],
2289
2290
2291
2292
2293
2294
        ),
        KernelInfo(
            F.normalize_video,
            sample_inputs_fn=sample_inputs_normalize_video,
        ),
    ]
2295
)
2296
2297


2298
def sample_inputs_convert_dtype_image_tensor():
2299
2300
2301
2302
2303
2304
2305
    for input_dtype, output_dtype in itertools.product(
        [torch.uint8, torch.int64, torch.float32, torch.float64], repeat=2
    ):
        if input_dtype.is_floating_point and output_dtype == torch.int64:
            # conversion cannot be performed safely
            continue

2306
        for image_loader in make_image_loaders(sizes=["random"], color_spaces=["RGB"], dtypes=[input_dtype]):
2307
2308
2309
            yield ArgsKwargs(image_loader, dtype=output_dtype)


2310
def reference_convert_dtype_image_tensor(image, dtype=torch.float):
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
    input_dtype = image.dtype
    output_dtype = dtype

    if output_dtype == input_dtype:
        return image

    def fn(value):
        if input_dtype.is_floating_point:
            if output_dtype.is_floating_point:
                return value
            else:
                return int(decimal.Decimal(value) * torch.iinfo(output_dtype).max)
        else:
            input_max_value = torch.iinfo(input_dtype).max

            if output_dtype.is_floating_point:
                return float(decimal.Decimal(value) / input_max_value)
            else:
                output_max_value = torch.iinfo(output_dtype).max

                if input_max_value > output_max_value:
                    factor = (input_max_value + 1) // (output_max_value + 1)
                    return value // factor
                else:
                    factor = (output_max_value + 1) // (input_max_value + 1)
                    return value * factor

    return torch.tensor(tree_map(fn, image.tolist()), dtype=dtype)


2341
def reference_inputs_convert_dtype_image_tensor():
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
    for input_dtype, output_dtype in itertools.product(
        [
            torch.uint8,
            torch.int16,
            torch.int32,
            torch.int64,
            torch.float16,
            torch.float32,
            torch.float64,
            torch.bfloat16,
        ],
        repeat=2,
    ):
        if (input_dtype == torch.float32 and output_dtype in {torch.int32, torch.int64}) or (
            input_dtype == torch.float64 and output_dtype == torch.int64
        ):
            continue

        if input_dtype.is_floating_point:
            data = [0.0, 0.5, 1.0]
        else:
            max_value = torch.iinfo(input_dtype).max
            data = [0, max_value // 2, max_value]
        image = torch.tensor(data, dtype=input_dtype)

        yield ArgsKwargs(image, dtype=output_dtype)


2370
2371
2372
2373
2374
def sample_inputs_convert_dtype_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader)


2375
2376
2377
2378
2379
skip_dtype_consistency = TestMark(
    ("TestKernels", "test_dtype_and_device_consistency"),
    pytest.mark.skip(reason="`convert_dtype_*` kernels convert the dtype by design"),
    condition=lambda args_kwargs: args_kwargs.args[0].dtype != args_kwargs.kwargs.get("dtype", torch.float32),
)
2380

2381
2382
2383
KERNEL_INFOS.extend(
    [
        KernelInfo(
2384
2385
2386
2387
            F.convert_dtype_image_tensor,
            sample_inputs_fn=sample_inputs_convert_dtype_image_tensor,
            reference_fn=reference_convert_dtype_image_tensor,
            reference_inputs_fn=reference_inputs_convert_dtype_image_tensor,
2388
            test_marks=[
2389
                skip_dtype_consistency,
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
                TestMark(
                    ("TestKernels", "test_against_reference"),
                    pytest.mark.xfail(reason="Conversion overflows"),
                    condition=lambda args_kwargs: (
                        args_kwargs.args[0].dtype in {torch.float16, torch.bfloat16}
                        and not args_kwargs.kwargs["dtype"].is_floating_point
                    )
                    or (
                        args_kwargs.args[0].dtype in {torch.int32, torch.int64}
                        and args_kwargs.kwargs["dtype"] == torch.float16
                    ),
                ),
            ],
        ),
2404
2405
2406
        KernelInfo(
            F.convert_dtype_video,
            sample_inputs_fn=sample_inputs_convert_dtype_video,
2407
2408
2409
            test_marks=[
                skip_dtype_consistency,
            ],
2410
        ),
2411
2412
    ]
)
2413
2414
2415
2416


def sample_inputs_uniform_temporal_subsample_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=[4]):
2417
        yield ArgsKwargs(video_loader, num_samples=2)
2418
2419


2420
def reference_uniform_temporal_subsample_video(x, num_samples):
2421
2422
    # Copy-pasted from
    # https://github.com/facebookresearch/pytorchvideo/blob/c8d23d8b7e597586a9e2d18f6ed31ad8aa379a7a/pytorchvideo/transforms/functional.py#L19
2423
    t = x.shape[-4]
2424
2425
2426
2427
    assert num_samples > 0 and t > 0
    # Sample by nearest neighbor interpolation if num_samples > t.
    indices = torch.linspace(0, t - 1, num_samples)
    indices = torch.clamp(indices, 0, t - 1).long()
2428
    return torch.index_select(x, -4, indices)
2429
2430
2431


def reference_inputs_uniform_temporal_subsample_video():
2432
    for video_loader in make_video_loaders(sizes=["random"], color_spaces=["RGB"], num_frames=[10]):
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
        for num_samples in range(1, video_loader.shape[-4] + 1):
            yield ArgsKwargs(video_loader, num_samples)


KERNEL_INFOS.append(
    KernelInfo(
        F.uniform_temporal_subsample_video,
        sample_inputs_fn=sample_inputs_uniform_temporal_subsample_video,
        reference_fn=reference_uniform_temporal_subsample_video,
        reference_inputs_fn=reference_inputs_uniform_temporal_subsample_video,
    )
)