"third_party/vscode:/vscode.git/clone" did not exist on "18c42e67df28bb6c7f5dc847595637327919e5ea"
transforms_v2_kernel_infos.py 84.7 KB
Newer Older
1
import decimal
2
3
4
5
6
import functools
import itertools
import math

import numpy as np
7
import PIL.Image
8
9
import pytest
import torch.testing
10
import torchvision.ops
11
import torchvision.transforms.v2.functional as F
12
from common_utils import (
13
    ArgsKwargs,
14
    combinations_grid,
15
16
    get_num_channels,
    ImageLoader,
17
    InfoBase,
18
    make_bounding_box_loader,
19
    make_bounding_box_loaders,
20
    make_detection_mask_loader,
21
22
    make_image_loader,
    make_image_loaders,
23
    make_image_loaders_for_interpolation,
24
    make_mask_loaders,
25
    make_video_loader,
26
    make_video_loaders,
27
28
    mark_framework_limitation,
    TestMark,
29
)
30
from torch.utils._pytree import tree_map
31
from torchvision import datapoints
32
from torchvision.transforms._functional_tensor import _max_value as get_max_value, _parse_pad_padding
33
34
35
36

__all__ = ["KernelInfo", "KERNEL_INFOS"]


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
class KernelInfo(InfoBase):
    def __init__(
        self,
        kernel,
        *,
        # Defaults to `kernel.__name__`. Should be set if the function is exposed under a different name
        # TODO: This can probably be removed after roll-out since we shouldn't have any aliasing then
        kernel_name=None,
        # Most common tests use these inputs to check the kernel. As such it should cover all valid code paths, but
        # should not include extensive parameter combinations to keep to overall test count moderate.
        sample_inputs_fn,
        # This function should mirror the kernel. It should have the same signature as the `kernel` and as such also
        # take tensors as inputs. Any conversion into another object type, e.g. PIL images or numpy arrays, should
        # happen inside the function. It should return a tensor or to be more precise an object that can be compared to
        # a tensor by `assert_close`. If omitted, no reference test will be performed.
        reference_fn=None,
        # These inputs are only used for the reference tests and thus can be comprehensive with regard to the parameter
        # values to be tested. If not specified, `sample_inputs_fn` will be used.
        reference_inputs_fn=None,
56
        # If true-ish, triggers a test that checks the kernel for consistency between uint8 and float32 inputs with the
57
        # reference inputs. This is usually used whenever we use a PIL kernel as reference.
58
59
60
61
        # Can be a callable in which case it will be called with `other_args, kwargs`. It should return the same
        # structure, but with adapted parameters. This is useful in case a parameter value is closely tied to the input
        # dtype.
        float32_vs_uint8=False,
62
63
64
        # Some kernels don't have dispatchers that would handle logging the usage. Thus, the kernel has to do it
        # manually. If set, triggers a test that makes sure this happens.
        logs_usage=False,
65
66
67
68
69
70
71
72
73
74
        # See InfoBase
        test_marks=None,
        # See InfoBase
        closeness_kwargs=None,
    ):
        super().__init__(id=kernel_name or kernel.__name__, test_marks=test_marks, closeness_kwargs=closeness_kwargs)
        self.kernel = kernel
        self.sample_inputs_fn = sample_inputs_fn
        self.reference_fn = reference_fn
        self.reference_inputs_fn = reference_inputs_fn
75

76
77
78
        if float32_vs_uint8 and not callable(float32_vs_uint8):
            float32_vs_uint8 = lambda other_args, kwargs: (other_args, kwargs)  # noqa: E731
        self.float32_vs_uint8 = float32_vs_uint8
79
        self.logs_usage = logs_usage
80
81


82
def pixel_difference_closeness_kwargs(uint8_atol, *, dtype=torch.uint8, mae=False):
83
    return dict(atol=uint8_atol / 255 * get_max_value(dtype), rtol=0, mae=mae)
84
85
86
87


def cuda_vs_cpu_pixel_difference(atol=1):
    return {
88
        (("TestKernels", "test_cuda_vs_cpu"), dtype, "cuda"): pixel_difference_closeness_kwargs(atol, dtype=dtype)
89
90
91
92
        for dtype in [torch.uint8, torch.float32]
    }


93
def pil_reference_pixel_difference(atol=1, mae=False):
94
    return {
95
        (("TestKernels", "test_against_reference"), torch.uint8, "cpu"): pixel_difference_closeness_kwargs(
96
            atol, mae=mae
97
98
99
100
        )
    }


101
def float32_vs_uint8_pixel_difference(atol=1, mae=False):
102
103
104
105
106
    return {
        (
            ("TestKernels", "test_float32_vs_uint8"),
            torch.float32,
            "cpu",
107
        ): pixel_difference_closeness_kwargs(atol, dtype=torch.float32, mae=mae)
108
    }
109

110

111
def scripted_vs_eager_float64_tolerances(device, atol=1e-6, rtol=1e-6):
112
113
114
115
116
    return {
        (("TestKernels", "test_scripted_vs_eager"), torch.float64, device): {"atol": atol, "rtol": rtol, "mae": False},
    }


117
118
def pil_reference_wrapper(pil_kernel):
    @functools.wraps(pil_kernel)
119
120
121
122
    def wrapper(input_tensor, *other_args, **kwargs):
        if input_tensor.dtype != torch.uint8:
            raise pytest.UsageError(f"Can only test uint8 tensor images against PIL, but input is {input_tensor.dtype}")
        if input_tensor.ndim > 3:
123
            raise pytest.UsageError(
124
                f"Can only test single tensor images against PIL, but input has shape {input_tensor.shape}"
125
126
            )

127
128
129
130
131
132
133
134
135
136
137
138
139
140
        input_pil = F.to_image_pil(input_tensor)
        output_pil = pil_kernel(input_pil, *other_args, **kwargs)
        if not isinstance(output_pil, PIL.Image.Image):
            return output_pil

        output_tensor = F.to_image_tensor(output_pil)

        # 2D mask shenanigans
        if output_tensor.ndim == 2 and input_tensor.ndim == 3:
            output_tensor = output_tensor.unsqueeze(0)
        elif output_tensor.ndim == 3 and input_tensor.ndim == 2:
            output_tensor = output_tensor.squeeze(0)

        return output_tensor
141
142
143
144

    return wrapper


145
146
147
148
def xfail_jit(reason, *, condition=None):
    return TestMark(("TestKernels", "test_scripted_vs_eager"), pytest.mark.xfail(reason=reason), condition=condition)


149
def xfail_jit_python_scalar_arg(name, *, reason=None):
150
151
    return xfail_jit(
        reason or f"Python scalar int or float for `{name}` is not supported when scripting",
152
153
154
155
        condition=lambda args_kwargs: isinstance(args_kwargs.kwargs.get(name), (int, float)),
    )


156
157
158
159
KERNEL_INFOS = []


def sample_inputs_horizontal_flip_image_tensor():
160
    for image_loader in make_image_loaders(sizes=["random"], dtypes=[torch.float32]):
161
162
163
164
        yield ArgsKwargs(image_loader)


def reference_inputs_horizontal_flip_image_tensor():
165
    for image_loader in make_image_loaders(extra_dims=[()], dtypes=[torch.uint8]):
166
167
168
169
        yield ArgsKwargs(image_loader)


def sample_inputs_horizontal_flip_bounding_box():
170
    for bounding_box_loader in make_bounding_box_loaders(
171
        formats=[datapoints.BoundingBoxFormat.XYXY], dtypes=[torch.float32]
172
    ):
173
        yield ArgsKwargs(
174
            bounding_box_loader, format=bounding_box_loader.format, spatial_size=bounding_box_loader.spatial_size
175
176
177
178
        )


def sample_inputs_horizontal_flip_mask():
179
    for image_loader in make_mask_loaders(sizes=["random"], dtypes=[torch.uint8]):
180
181
182
        yield ArgsKwargs(image_loader)


183
184
185
186
187
def sample_inputs_horizontal_flip_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader)


188
189
190
191
192
193
def reference_horizontal_flip_bounding_box(bounding_box, *, format, spatial_size):
    affine_matrix = np.array(
        [
            [-1, 0, spatial_size[1]],
            [0, 1, 0],
        ],
194
        dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
195
196
    )

197
198
199
    expected_bboxes = reference_affine_bounding_box_helper(
        bounding_box, format=format, spatial_size=spatial_size, affine_matrix=affine_matrix
    )
200
201
202
203
204
205
206
207
208
209
210
211
212

    return expected_bboxes


def reference_inputs_flip_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders(extra_dims=[()]):
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
            spatial_size=bounding_box_loader.spatial_size,
        )


213
214
215
216
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.horizontal_flip_image_tensor,
217
            kernel_name="horizontal_flip_image_tensor",
218
219
220
            sample_inputs_fn=sample_inputs_horizontal_flip_image_tensor,
            reference_fn=pil_reference_wrapper(F.horizontal_flip_image_pil),
            reference_inputs_fn=reference_inputs_horizontal_flip_image_tensor,
221
            float32_vs_uint8=True,
222
223
224
225
        ),
        KernelInfo(
            F.horizontal_flip_bounding_box,
            sample_inputs_fn=sample_inputs_horizontal_flip_bounding_box,
226
227
            reference_fn=reference_horizontal_flip_bounding_box,
            reference_inputs_fn=reference_inputs_flip_bounding_box,
228
229
230
231
232
        ),
        KernelInfo(
            F.horizontal_flip_mask,
            sample_inputs_fn=sample_inputs_horizontal_flip_mask,
        ),
233
234
235
236
        KernelInfo(
            F.horizontal_flip_video,
            sample_inputs_fn=sample_inputs_horizontal_flip_video,
        ),
237
238
239
240
    ]
)


241
242
243
def _get_resize_sizes(spatial_size):
    height, width = spatial_size
    length = max(spatial_size)
244
    yield length
245
246
247
248
249
    yield [length]
    yield (length,)
    new_height = int(height * 0.75)
    new_width = int(width * 1.25)
    yield [new_height, new_width]
250
251
252
    yield height, width


253
def sample_inputs_resize_image_tensor():
254
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=["RGB"], dtypes=[torch.float32]):
255
        for size in _get_resize_sizes(image_loader.spatial_size):
256
257
            yield ArgsKwargs(image_loader, size=size)

258
    for image_loader, interpolation in itertools.product(
259
        make_image_loaders(sizes=["random"], color_spaces=["RGB"]),
260
261
        [
            F.InterpolationMode.NEAREST,
262
            F.InterpolationMode.BILINEAR,
263
264
265
            F.InterpolationMode.BICUBIC,
        ],
    ):
266
        yield ArgsKwargs(image_loader, size=[min(image_loader.spatial_size) + 1], interpolation=interpolation)
267
268

    yield ArgsKwargs(make_image_loader(size=(11, 17)), size=20, max_size=25)
269
270


271
272
273
274
275
276
277
278
279
280
@pil_reference_wrapper
def reference_resize_image_tensor(*args, **kwargs):
    if not kwargs.pop("antialias", False) and kwargs.get("interpolation", F.InterpolationMode.BILINEAR) in {
        F.InterpolationMode.BILINEAR,
        F.InterpolationMode.BICUBIC,
    }:
        raise pytest.UsageError("Anti-aliasing is always active in PIL")
    return F.resize_image_pil(*args, **kwargs)


281
282
def reference_inputs_resize_image_tensor():
    for image_loader, interpolation in itertools.product(
283
        make_image_loaders_for_interpolation(),
284
285
        [
            F.InterpolationMode.NEAREST,
286
            F.InterpolationMode.NEAREST_EXACT,
287
288
289
290
            F.InterpolationMode.BILINEAR,
            F.InterpolationMode.BICUBIC,
        ],
    ):
291
        for size in _get_resize_sizes(image_loader.spatial_size):
292
293
294
295
296
297
298
299
300
301
            yield ArgsKwargs(
                image_loader,
                size=size,
                interpolation=interpolation,
                antialias=interpolation
                in {
                    F.InterpolationMode.BILINEAR,
                    F.InterpolationMode.BICUBIC,
                },
            )
302
303
304


def sample_inputs_resize_bounding_box():
305
    for bounding_box_loader in make_bounding_box_loaders():
306
        for size in _get_resize_sizes(bounding_box_loader.spatial_size):
307
            yield ArgsKwargs(bounding_box_loader, spatial_size=bounding_box_loader.spatial_size, size=size)
308
309


310
def sample_inputs_resize_mask():
311
312
    for mask_loader in make_mask_loaders(sizes=["random"], num_categories=["random"], num_objects=["random"]):
        yield ArgsKwargs(mask_loader, size=[min(mask_loader.shape[-2:]) + 1])
313
314


315
316
317
318
319
def sample_inputs_resize_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, size=[min(video_loader.shape[-2:]) + 1])


320
321
322
323
324
325
326
327
328
def reference_resize_bounding_box(bounding_box, *, spatial_size, size, max_size=None):
    old_height, old_width = spatial_size
    new_height, new_width = F._geometry._compute_resized_output_size(spatial_size, size=size, max_size=max_size)

    affine_matrix = np.array(
        [
            [new_width / old_width, 0, 0],
            [0, new_height / old_height, 0],
        ],
329
        dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
330
331
332
    )

    expected_bboxes = reference_affine_bounding_box_helper(
333
334
335
336
        bounding_box,
        format=bounding_box.format,
        spatial_size=(new_height, new_width),
        affine_matrix=affine_matrix,
337
338
339
340
341
    )
    return expected_bboxes, (new_height, new_width)


def reference_inputs_resize_bounding_box():
342
    for bounding_box_loader in make_bounding_box_loaders(extra_dims=((), (4,))):
343
344
345
346
        for size in _get_resize_sizes(bounding_box_loader.spatial_size):
            yield ArgsKwargs(bounding_box_loader, size=size, spatial_size=bounding_box_loader.spatial_size)


347
348
349
350
351
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.resize_image_tensor,
            sample_inputs_fn=sample_inputs_resize_image_tensor,
352
            reference_fn=reference_resize_image_tensor,
353
            reference_inputs_fn=reference_inputs_resize_image_tensor,
354
            float32_vs_uint8=True,
355
            closeness_kwargs={
356
                **pil_reference_pixel_difference(10, mae=True),
357
                **cuda_vs_cpu_pixel_difference(),
358
                **float32_vs_uint8_pixel_difference(1, mae=True),
359
            },
360
            test_marks=[
361
                xfail_jit_python_scalar_arg("size"),
362
            ],
363
364
365
366
        ),
        KernelInfo(
            F.resize_bounding_box,
            sample_inputs_fn=sample_inputs_resize_bounding_box,
367
368
            reference_fn=reference_resize_bounding_box,
            reference_inputs_fn=reference_inputs_resize_bounding_box,
369
370
371
            closeness_kwargs={
                (("TestKernels", "test_against_reference"), torch.int64, "cpu"): dict(atol=1, rtol=0),
            },
372
            test_marks=[
373
                xfail_jit_python_scalar_arg("size"),
374
            ],
375
        ),
376
377
378
        KernelInfo(
            F.resize_mask,
            sample_inputs_fn=sample_inputs_resize_mask,
379
            closeness_kwargs=pil_reference_pixel_difference(10),
380
            test_marks=[
381
                xfail_jit_python_scalar_arg("size"),
382
            ],
383
        ),
384
385
386
        KernelInfo(
            F.resize_video,
            sample_inputs_fn=sample_inputs_resize_video,
387
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
388
        ),
389
390
391
392
393
394
395
396
397
398
399
400
    ]
)


_AFFINE_KWARGS = combinations_grid(
    angle=[-87, 15, 90],
    translate=[(5, 5), (-5, -5)],
    scale=[0.77, 1.27],
    shear=[(12, 12), (0, 0)],
)


401
402
403
404
405
406
407
408
409
410
def _diversify_affine_kwargs_types(affine_kwargs):
    angle = affine_kwargs["angle"]
    for diverse_angle in [int(angle), float(angle)]:
        yield dict(affine_kwargs, angle=diverse_angle)

    shear = affine_kwargs["shear"]
    for diverse_shear in [tuple(shear), list(shear), int(shear[0]), float(shear[0])]:
        yield dict(affine_kwargs, shear=diverse_shear)


411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
def _full_affine_params(**partial_params):
    partial_params.setdefault("angle", 0.0)
    partial_params.setdefault("translate", [0.0, 0.0])
    partial_params.setdefault("scale", 1.0)
    partial_params.setdefault("shear", [0.0, 0.0])
    partial_params.setdefault("center", None)
    return partial_params


_DIVERSE_AFFINE_PARAMS = [
    _full_affine_params(**{name: arg})
    for name, args in [
        ("angle", [1.0, 2]),
        ("translate", [[1.0, 0.5], [1, 2], (1.0, 0.5), (1, 2)]),
        ("scale", [0.5]),
        ("shear", [1.0, 2, [1.0], [2], (1.0,), (2,), [1.0, 0.5], [1, 2], (1.0, 0.5), (1, 2)]),
        ("center", [None, [1.0, 0.5], [1, 2], (1.0, 0.5), (1, 2)]),
    ]
    for arg in args
]


433
def get_fills(*, num_channels, dtype):
434
435
    yield None

436
437
438
439
    int_value = get_max_value(dtype)
    float_value = int_value / 2
    yield int_value
    yield float_value
440

441
442
443
    for vector_type in [list, tuple]:
        yield vector_type([int_value])
        yield vector_type([float_value])
444

445
446
447
        if num_channels > 1:
            yield vector_type(float_value * c / 10 for c in range(num_channels))
            yield vector_type(int_value if c % 2 == 0 else 0 for c in range(num_channels))
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462


def float32_vs_uint8_fill_adapter(other_args, kwargs):
    fill = kwargs.get("fill")
    if fill is None:
        return other_args, kwargs

    if isinstance(fill, (int, float)):
        fill /= 255
    else:
        fill = type(fill)(fill_ / 255 for fill_ in fill)

    return other_args, dict(kwargs, fill=fill)


463
def sample_inputs_affine_image_tensor():
464
    make_affine_image_loaders = functools.partial(
465
        make_image_loaders, sizes=["random"], color_spaces=["RGB"], dtypes=[torch.float32]
466
467
468
469
470
471
    )

    for image_loader, affine_params in itertools.product(make_affine_image_loaders(), _DIVERSE_AFFINE_PARAMS):
        yield ArgsKwargs(image_loader, **affine_params)

    for image_loader in make_affine_image_loaders():
472
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
473
474
475
476
            yield ArgsKwargs(image_loader, **_full_affine_params(), fill=fill)

    for image_loader, interpolation in itertools.product(
        make_affine_image_loaders(),
477
478
479
480
        [
            F.InterpolationMode.NEAREST,
            F.InterpolationMode.BILINEAR,
        ],
481
    ):
482
        yield ArgsKwargs(image_loader, **_full_affine_params(), fill=0)
483

484
485

def reference_inputs_affine_image_tensor():
486
    for image_loader, affine_kwargs in itertools.product(make_image_loaders_for_interpolation(), _AFFINE_KWARGS):
487
        yield ArgsKwargs(
488
            image_loader,
489
490
491
492
493
494
            interpolation=F.InterpolationMode.NEAREST,
            **affine_kwargs,
        )


def sample_inputs_affine_bounding_box():
495
    for bounding_box_loader, affine_params in itertools.product(
496
        make_bounding_box_loaders(formats=[datapoints.BoundingBoxFormat.XYXY]), _DIVERSE_AFFINE_PARAMS
497
498
499
500
    ):
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
501
            spatial_size=bounding_box_loader.spatial_size,
502
            **affine_params,
503
504
        )

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

def _compute_affine_matrix(angle, translate, scale, shear, center):
    rot = math.radians(angle)
    cx, cy = center
    tx, ty = translate
    sx, sy = [math.radians(sh_) for sh_ in shear]

    c_matrix = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
    t_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
    c_matrix_inv = np.linalg.inv(c_matrix)
    rs_matrix = np.array(
        [
            [scale * math.cos(rot), -scale * math.sin(rot), 0],
            [scale * math.sin(rot), scale * math.cos(rot), 0],
            [0, 0, 1],
        ]
    )
    shear_x_matrix = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
    shear_y_matrix = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
    rss_matrix = np.matmul(rs_matrix, np.matmul(shear_y_matrix, shear_x_matrix))
    true_matrix = np.matmul(t_matrix, np.matmul(c_matrix, np.matmul(rss_matrix, c_matrix_inv)))
    return true_matrix


529
530
def reference_affine_bounding_box_helper(bounding_box, *, format, spatial_size, affine_matrix):
    def transform(bbox, affine_matrix_, format_, spatial_size_):
531
532
        # Go to float before converting to prevent precision loss in case of CXCYWH -> XYXY and W or H is 1
        in_dtype = bbox.dtype
533
534
        if not torch.is_floating_point(bbox):
            bbox = bbox.float()
535
        bbox_xyxy = F.convert_format_bounding_box(
536
537
538
539
            bbox.as_subclass(torch.Tensor),
            old_format=format_,
            new_format=datapoints.BoundingBoxFormat.XYXY,
            inplace=True,
540
        )
541
542
543
544
545
546
547
548
        points = np.array(
            [
                [bbox_xyxy[0].item(), bbox_xyxy[1].item(), 1.0],
                [bbox_xyxy[2].item(), bbox_xyxy[1].item(), 1.0],
                [bbox_xyxy[0].item(), bbox_xyxy[3].item(), 1.0],
                [bbox_xyxy[2].item(), bbox_xyxy[3].item(), 1.0],
            ]
        )
549
        transformed_points = np.matmul(points, affine_matrix_.T)
550
551
        out_bbox = torch.tensor(
            [
552
553
554
555
                np.min(transformed_points[:, 0]).item(),
                np.min(transformed_points[:, 1]).item(),
                np.max(transformed_points[:, 0]).item(),
                np.max(transformed_points[:, 1]).item(),
556
            ],
557
            dtype=bbox_xyxy.dtype,
558
        )
559
        out_bbox = F.convert_format_bounding_box(
560
            out_bbox, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format_, inplace=True
561
        )
562
563
564
565
        # It is important to clamp before casting, especially for CXCYWH format, dtype=int64
        out_bbox = F.clamp_bounding_box(out_bbox, format=format_, spatial_size=spatial_size_)
        out_bbox = out_bbox.to(dtype=in_dtype)
        return out_bbox
566
567
568
569

    if bounding_box.ndim < 2:
        bounding_box = [bounding_box]

570
    expected_bboxes = [transform(bbox, affine_matrix, format, spatial_size) for bbox in bounding_box]
571
572
573
574
575
576
577
578
    if len(expected_bboxes) > 1:
        expected_bboxes = torch.stack(expected_bboxes)
    else:
        expected_bboxes = expected_bboxes[0]

    return expected_bboxes


579
580
581
582
583
584
585
def reference_affine_bounding_box(bounding_box, *, format, spatial_size, angle, translate, scale, shear, center=None):
    if center is None:
        center = [s * 0.5 for s in spatial_size[::-1]]

    affine_matrix = _compute_affine_matrix(angle, translate, scale, shear, center)
    affine_matrix = affine_matrix[:2, :]

586
587
588
    expected_bboxes = reference_affine_bounding_box_helper(
        bounding_box, format=format, spatial_size=spatial_size, affine_matrix=affine_matrix
    )
589
590
591
592

    return expected_bboxes


593
def reference_inputs_affine_bounding_box():
594
595
596
    for bounding_box_loader, affine_kwargs in itertools.product(
        make_bounding_box_loaders(extra_dims=[()]),
        _AFFINE_KWARGS,
597
598
599
600
    ):
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
601
            spatial_size=bounding_box_loader.spatial_size,
602
            **affine_kwargs,
603
604
605
        )


606
def sample_inputs_affine_mask():
607
608
    for mask_loader in make_mask_loaders(sizes=["random"], num_categories=["random"], num_objects=["random"]):
        yield ArgsKwargs(mask_loader, **_full_affine_params())
609

610

611
612
613
614
615
def sample_inputs_affine_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, **_full_affine_params())


616
617
618
619
620
621
622
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.affine_image_tensor,
            sample_inputs_fn=sample_inputs_affine_image_tensor,
            reference_fn=pil_reference_wrapper(F.affine_image_pil),
            reference_inputs_fn=reference_inputs_affine_image_tensor,
623
            float32_vs_uint8=True,
624
            closeness_kwargs=pil_reference_pixel_difference(10, mae=True),
625
626
            test_marks=[
                xfail_jit_python_scalar_arg("shear"),
627
                xfail_jit_python_scalar_arg("fill"),
628
            ],
629
630
631
632
633
634
        ),
        KernelInfo(
            F.affine_bounding_box,
            sample_inputs_fn=sample_inputs_affine_bounding_box,
            reference_fn=reference_affine_bounding_box,
            reference_inputs_fn=reference_inputs_affine_bounding_box,
635
            test_marks=[
636
                xfail_jit_python_scalar_arg("shear"),
637
            ],
638
        ),
639
640
        KernelInfo(
            F.affine_mask,
641
            sample_inputs_fn=sample_inputs_affine_mask,
642
643
644
            test_marks=[
                xfail_jit_python_scalar_arg("shear"),
            ],
645
        ),
646
647
648
649
        KernelInfo(
            F.affine_video,
            sample_inputs_fn=sample_inputs_affine_video,
        ),
650
651
    ]
)
652
653
654


def sample_inputs_convert_format_bounding_box():
655
    formats = list(datapoints.BoundingBoxFormat)
656
    for bounding_box_loader, new_format in itertools.product(make_bounding_box_loaders(formats=formats), formats):
657
        yield ArgsKwargs(bounding_box_loader, old_format=bounding_box_loader.format, new_format=new_format)
658
659


660
def reference_convert_format_bounding_box(bounding_box, old_format, new_format):
661
    return torchvision.ops.box_convert(
662
663
        bounding_box, in_fmt=old_format.name.lower(), out_fmt=new_format.name.lower()
    ).to(bounding_box.dtype)
664
665
666


def reference_inputs_convert_format_bounding_box():
667
    for args_kwargs in sample_inputs_convert_format_bounding_box():
668
669
        if len(args_kwargs.args[0].shape) == 2:
            yield args_kwargs
670
671
672
673
674
675
676
677


KERNEL_INFOS.append(
    KernelInfo(
        F.convert_format_bounding_box,
        sample_inputs_fn=sample_inputs_convert_format_bounding_box,
        reference_fn=reference_convert_format_bounding_box,
        reference_inputs_fn=reference_inputs_convert_format_bounding_box,
678
        logs_usage=True,
679
680
681
682
    ),
)


683
684
685
686
687
688
def sample_inputs_vertical_flip_image_tensor():
    for image_loader in make_image_loaders(sizes=["random"], dtypes=[torch.float32]):
        yield ArgsKwargs(image_loader)


def reference_inputs_vertical_flip_image_tensor():
689
    for image_loader in make_image_loaders(extra_dims=[()], dtypes=[torch.uint8]):
690
691
692
693
694
        yield ArgsKwargs(image_loader)


def sample_inputs_vertical_flip_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders(
695
        formats=[datapoints.BoundingBoxFormat.XYXY], dtypes=[torch.float32]
696
697
    ):
        yield ArgsKwargs(
698
            bounding_box_loader, format=bounding_box_loader.format, spatial_size=bounding_box_loader.spatial_size
699
700
701
702
703
704
705
706
        )


def sample_inputs_vertical_flip_mask():
    for image_loader in make_mask_loaders(sizes=["random"], dtypes=[torch.uint8]):
        yield ArgsKwargs(image_loader)


707
708
709
710
711
def sample_inputs_vertical_flip_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader)


712
713
714
715
716
717
def reference_vertical_flip_bounding_box(bounding_box, *, format, spatial_size):
    affine_matrix = np.array(
        [
            [1, 0, 0],
            [0, -1, spatial_size[0]],
        ],
718
        dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
719
720
    )

721
722
723
    expected_bboxes = reference_affine_bounding_box_helper(
        bounding_box, format=format, spatial_size=spatial_size, affine_matrix=affine_matrix
    )
724
725
726
727

    return expected_bboxes


728
729
730
731
732
733
734
735
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.vertical_flip_image_tensor,
            kernel_name="vertical_flip_image_tensor",
            sample_inputs_fn=sample_inputs_vertical_flip_image_tensor,
            reference_fn=pil_reference_wrapper(F.vertical_flip_image_pil),
            reference_inputs_fn=reference_inputs_vertical_flip_image_tensor,
736
            float32_vs_uint8=True,
737
738
739
740
        ),
        KernelInfo(
            F.vertical_flip_bounding_box,
            sample_inputs_fn=sample_inputs_vertical_flip_bounding_box,
741
742
            reference_fn=reference_vertical_flip_bounding_box,
            reference_inputs_fn=reference_inputs_flip_bounding_box,
743
744
745
746
747
        ),
        KernelInfo(
            F.vertical_flip_mask,
            sample_inputs_fn=sample_inputs_vertical_flip_mask,
        ),
748
749
750
751
        KernelInfo(
            F.vertical_flip_video,
            sample_inputs_fn=sample_inputs_vertical_flip_video,
        ),
752
753
754
755
756
757
758
    ]
)

_ROTATE_ANGLES = [-87, 15, 90]


def sample_inputs_rotate_image_tensor():
759
    make_rotate_image_loaders = functools.partial(
760
        make_image_loaders, sizes=["random"], color_spaces=["RGB"], dtypes=[torch.float32]
761
762
763
764
765
766
767
    )

    for image_loader in make_rotate_image_loaders():
        yield ArgsKwargs(image_loader, angle=15.0, expand=True)

    for image_loader, center in itertools.product(
        make_rotate_image_loaders(), [None, [1.0, 0.5], [1, 2], (1.0, 0.5), (1, 2)]
768
    ):
769
        yield ArgsKwargs(image_loader, angle=15.0, center=center)
770

771
    for image_loader in make_rotate_image_loaders():
772
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
773
774
775
776
777
778
779
            yield ArgsKwargs(image_loader, angle=15.0, fill=fill)

    for image_loader, interpolation in itertools.product(
        make_rotate_image_loaders(),
        [F.InterpolationMode.NEAREST, F.InterpolationMode.BILINEAR],
    ):
        yield ArgsKwargs(image_loader, angle=15.0, fill=0)
780
781
782


def reference_inputs_rotate_image_tensor():
783
    for image_loader, angle in itertools.product(make_image_loaders_for_interpolation(), _ROTATE_ANGLES):
784
785
786
787
788
789
790
791
        yield ArgsKwargs(image_loader, angle=angle)


def sample_inputs_rotate_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders():
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
792
            spatial_size=bounding_box_loader.spatial_size,
793
794
795
796
            angle=_ROTATE_ANGLES[0],
        )


797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
def reference_inputs_rotate_bounding_box():
    for bounding_box_loader, angle in itertools.product(
        make_bounding_box_loaders(extra_dims=((), (4,))), _ROTATE_ANGLES
    ):
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
            spatial_size=bounding_box_loader.spatial_size,
            angle=angle,
        )

    # TODO: add samples with expand=True and center


def reference_rotate_bounding_box(bounding_box, *, format, spatial_size, angle, expand=False, center=None):

    if center is None:
        center = [spatial_size[1] * 0.5, spatial_size[0] * 0.5]

    a = np.cos(angle * np.pi / 180.0)
    b = np.sin(angle * np.pi / 180.0)
    cx = center[0]
    cy = center[1]
    affine_matrix = np.array(
        [
            [a, b, cx - cx * a - b * cy],
            [-b, a, cy + cx * b - a * cy],
        ],
        dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
    )

    expected_bboxes = reference_affine_bounding_box_helper(
        bounding_box, format=format, spatial_size=spatial_size, affine_matrix=affine_matrix
    )
    return expected_bboxes, spatial_size


834
def sample_inputs_rotate_mask():
835
836
    for mask_loader in make_mask_loaders(sizes=["random"], num_categories=["random"], num_objects=["random"]):
        yield ArgsKwargs(mask_loader, angle=15.0)
837
838


839
840
841
842
843
def sample_inputs_rotate_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, angle=15.0)


844
845
846
847
848
849
850
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.rotate_image_tensor,
            sample_inputs_fn=sample_inputs_rotate_image_tensor,
            reference_fn=pil_reference_wrapper(F.rotate_image_pil),
            reference_inputs_fn=reference_inputs_rotate_image_tensor,
851
            float32_vs_uint8=True,
852
            closeness_kwargs=pil_reference_pixel_difference(1, mae=True),
853
            test_marks=[
854
                xfail_jit_python_scalar_arg("fill"),
855
            ],
856
857
858
859
        ),
        KernelInfo(
            F.rotate_bounding_box,
            sample_inputs_fn=sample_inputs_rotate_bounding_box,
860
861
            reference_fn=reference_rotate_bounding_box,
            reference_inputs_fn=reference_inputs_rotate_bounding_box,
862
            closeness_kwargs={
863
864
                **scripted_vs_eager_float64_tolerances("cpu", atol=1e-4, rtol=1e-4),
                **scripted_vs_eager_float64_tolerances("cuda", atol=1e-4, rtol=1e-4),
865
            },
866
867
868
869
870
        ),
        KernelInfo(
            F.rotate_mask,
            sample_inputs_fn=sample_inputs_rotate_mask,
        ),
871
872
873
874
        KernelInfo(
            F.rotate_video,
            sample_inputs_fn=sample_inputs_rotate_video,
        ),
875
876
877
878
879
880
881
    ]
)

_CROP_PARAMS = combinations_grid(top=[-8, 0, 9], left=[-8, 0, 9], height=[12, 20], width=[12, 20])


def sample_inputs_crop_image_tensor():
882
    for image_loader, params in itertools.product(
883
        make_image_loaders(sizes=[(16, 17)], color_spaces=["RGB"], dtypes=[torch.float32]),
884
885
886
887
888
889
890
891
        [
            dict(top=4, left=3, height=7, width=8),
            dict(top=-1, left=3, height=7, width=8),
            dict(top=4, left=-1, height=7, width=8),
            dict(top=4, left=3, height=17, width=8),
            dict(top=4, left=3, height=7, width=18),
        ],
    ):
892
893
894
895
        yield ArgsKwargs(image_loader, **params)


def reference_inputs_crop_image_tensor():
896
897
898
    for image_loader, params in itertools.product(
        make_image_loaders(extra_dims=[()], dtypes=[torch.uint8]), _CROP_PARAMS
    ):
899
900
901
902
903
904
905
        yield ArgsKwargs(image_loader, **params)


def sample_inputs_crop_bounding_box():
    for bounding_box_loader, params in itertools.product(
        make_bounding_box_loaders(), [_CROP_PARAMS[0], _CROP_PARAMS[-1]]
    ):
906
        yield ArgsKwargs(bounding_box_loader, format=bounding_box_loader.format, **params)
907
908
909


def sample_inputs_crop_mask():
910
911
    for mask_loader in make_mask_loaders(sizes=[(16, 17)], num_categories=["random"], num_objects=["random"]):
        yield ArgsKwargs(mask_loader, top=4, left=3, height=7, width=8)
912
913
914
915
916
917
918


def reference_inputs_crop_mask():
    for mask_loader, params in itertools.product(make_mask_loaders(extra_dims=[()], num_objects=[1]), _CROP_PARAMS):
        yield ArgsKwargs(mask_loader, **params)


919
920
921
922
923
def sample_inputs_crop_video():
    for video_loader in make_video_loaders(sizes=[(16, 17)], num_frames=["random"]):
        yield ArgsKwargs(video_loader, top=4, left=3, height=7, width=8)


924
925
926
927
928
929
def reference_crop_bounding_box(bounding_box, *, format, top, left, height, width):
    affine_matrix = np.array(
        [
            [1, 0, -left],
            [0, 1, -top],
        ],
930
        dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
931
932
    )

933
934
935
936
937
    spatial_size = (height, width)
    expected_bboxes = reference_affine_bounding_box_helper(
        bounding_box, format=format, spatial_size=spatial_size, affine_matrix=affine_matrix
    )
    return expected_bboxes, spatial_size
938
939
940
941
942
943
944
945
946


def reference_inputs_crop_bounding_box():
    for bounding_box_loader, params in itertools.product(
        make_bounding_box_loaders(extra_dims=((), (4,))), [_CROP_PARAMS[0], _CROP_PARAMS[-1]]
    ):
        yield ArgsKwargs(bounding_box_loader, format=bounding_box_loader.format, **params)


947
948
949
950
951
952
953
954
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.crop_image_tensor,
            kernel_name="crop_image_tensor",
            sample_inputs_fn=sample_inputs_crop_image_tensor,
            reference_fn=pil_reference_wrapper(F.crop_image_pil),
            reference_inputs_fn=reference_inputs_crop_image_tensor,
955
            float32_vs_uint8=True,
956
957
958
959
        ),
        KernelInfo(
            F.crop_bounding_box,
            sample_inputs_fn=sample_inputs_crop_bounding_box,
960
961
            reference_fn=reference_crop_bounding_box,
            reference_inputs_fn=reference_inputs_crop_bounding_box,
962
963
964
965
966
967
        ),
        KernelInfo(
            F.crop_mask,
            sample_inputs_fn=sample_inputs_crop_mask,
            reference_fn=pil_reference_wrapper(F.crop_image_pil),
            reference_inputs_fn=reference_inputs_crop_mask,
968
            float32_vs_uint8=True,
969
        ),
970
971
972
973
        KernelInfo(
            F.crop_video,
            sample_inputs_fn=sample_inputs_crop_video,
        ),
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
    ]
)

_RESIZED_CROP_PARAMS = combinations_grid(top=[-8, 9], left=[-8, 9], height=[12], width=[12], size=[(16, 18)])


def sample_inputs_resized_crop_image_tensor():
    for image_loader in make_image_loaders():
        yield ArgsKwargs(image_loader, **_RESIZED_CROP_PARAMS[0])


@pil_reference_wrapper
def reference_resized_crop_image_tensor(*args, **kwargs):
    if not kwargs.pop("antialias", False) and kwargs.get("interpolation", F.InterpolationMode.BILINEAR) in {
        F.InterpolationMode.BILINEAR,
        F.InterpolationMode.BICUBIC,
    }:
        raise pytest.UsageError("Anti-aliasing is always active in PIL")
    return F.resized_crop_image_pil(*args, **kwargs)


def reference_inputs_resized_crop_image_tensor():
    for image_loader, interpolation, params in itertools.product(
997
        make_image_loaders_for_interpolation(),
998
999
        [
            F.InterpolationMode.NEAREST,
1000
            F.InterpolationMode.NEAREST_EXACT,
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
            F.InterpolationMode.BILINEAR,
            F.InterpolationMode.BICUBIC,
        ],
        _RESIZED_CROP_PARAMS,
    ):
        yield ArgsKwargs(
            image_loader,
            interpolation=interpolation,
            antialias=interpolation
            in {
                F.InterpolationMode.BILINEAR,
                F.InterpolationMode.BICUBIC,
            },
            **params,
        )


def sample_inputs_resized_crop_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders():
        yield ArgsKwargs(bounding_box_loader, format=bounding_box_loader.format, **_RESIZED_CROP_PARAMS[0])


def sample_inputs_resized_crop_mask():
    for mask_loader in make_mask_loaders():
        yield ArgsKwargs(mask_loader, **_RESIZED_CROP_PARAMS[0])


1028
1029
1030
1031
1032
def sample_inputs_resized_crop_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, **_RESIZED_CROP_PARAMS[0])


1033
1034
1035
1036
1037
1038
1039
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.resized_crop_image_tensor,
            sample_inputs_fn=sample_inputs_resized_crop_image_tensor,
            reference_fn=reference_resized_crop_image_tensor,
            reference_inputs_fn=reference_inputs_resized_crop_image_tensor,
1040
            float32_vs_uint8=True,
1041
            closeness_kwargs={
1042
                **cuda_vs_cpu_pixel_difference(),
1043
1044
                **pil_reference_pixel_difference(3, mae=True),
                **float32_vs_uint8_pixel_difference(3, mae=True),
1045
            },
1046
1047
1048
1049
1050
1051
1052
1053
1054
        ),
        KernelInfo(
            F.resized_crop_bounding_box,
            sample_inputs_fn=sample_inputs_resized_crop_bounding_box,
        ),
        KernelInfo(
            F.resized_crop_mask,
            sample_inputs_fn=sample_inputs_resized_crop_mask,
        ),
1055
1056
1057
        KernelInfo(
            F.resized_crop_video,
            sample_inputs_fn=sample_inputs_resized_crop_video,
1058
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
1059
        ),
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
    ]
)

_PAD_PARAMS = combinations_grid(
    padding=[[1], [1, 1], [1, 1, 2, 2]],
    padding_mode=["constant", "symmetric", "edge", "reflect"],
)


def sample_inputs_pad_image_tensor():
1070
    make_pad_image_loaders = functools.partial(
1071
        make_image_loaders, sizes=["random"], color_spaces=["RGB"], dtypes=[torch.float32]
1072
1073
1074
1075
1076
1077
1078
1079
1080
    )

    for image_loader, padding in itertools.product(
        make_pad_image_loaders(),
        [1, (1,), (1, 2), (1, 2, 3, 4), [1], [1, 2], [1, 2, 3, 4]],
    ):
        yield ArgsKwargs(image_loader, padding=padding)

    for image_loader in make_pad_image_loaders():
1081
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
            yield ArgsKwargs(image_loader, padding=[1], fill=fill)

    for image_loader, padding_mode in itertools.product(
        # We branch for non-constant padding and integer inputs
        make_pad_image_loaders(dtypes=[torch.uint8]),
        ["constant", "symmetric", "edge", "reflect"],
    ):
        yield ArgsKwargs(image_loader, padding=[1], padding_mode=padding_mode)

    # `torch.nn.functional.pad` does not support symmetric padding, and thus we have a custom implementation. Besides
    # negative padding, this is already handled by the inputs above.
    for image_loader in make_pad_image_loaders():
        yield ArgsKwargs(image_loader, padding=[-1], padding_mode="symmetric")
1095
1096
1097


def reference_inputs_pad_image_tensor():
1098
1099
1100
1101
1102
1103
1104
    for image_loader, params in itertools.product(
        make_image_loaders(extra_dims=[()], dtypes=[torch.uint8]), _PAD_PARAMS
    ):
        for fill in get_fills(
            num_channels=image_loader.num_channels,
            dtype=image_loader.dtype,
        ):
1105
1106
1107
1108
            # FIXME: PIL kernel doesn't support sequences of length 1 if the number of channels is larger. Shouldn't it?
            if isinstance(fill, (list, tuple)):
                continue

1109
1110
1111
1112
            yield ArgsKwargs(image_loader, fill=fill, **params)


def sample_inputs_pad_bounding_box():
1113
1114
1115
    for bounding_box_loader, padding in itertools.product(
        make_bounding_box_loaders(), [1, (1,), (1, 2), (1, 2, 3, 4), [1], [1, 2], [1, 2, 3, 4]]
    ):
1116
        yield ArgsKwargs(
1117
1118
            bounding_box_loader,
            format=bounding_box_loader.format,
1119
            spatial_size=bounding_box_loader.spatial_size,
1120
1121
            padding=padding,
            padding_mode="constant",
1122
        )
1123
1124
1125


def sample_inputs_pad_mask():
1126
1127
    for mask_loader in make_mask_loaders(sizes=["random"], num_categories=["random"], num_objects=["random"]):
        yield ArgsKwargs(mask_loader, padding=[1])
1128
1129
1130


def reference_inputs_pad_mask():
1131
1132
1133
1134
    for mask_loader, fill, params in itertools.product(
        make_mask_loaders(num_objects=[1], extra_dims=[()]), [None, 127], _PAD_PARAMS
    ):
        yield ArgsKwargs(mask_loader, fill=fill, **params)
1135
1136


1137
1138
1139
1140
1141
def sample_inputs_pad_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, padding=[1])


1142
1143
1144
1145
1146
1147
1148
1149
1150
def reference_pad_bounding_box(bounding_box, *, format, spatial_size, padding, padding_mode):

    left, right, top, bottom = _parse_pad_padding(padding)

    affine_matrix = np.array(
        [
            [1, 0, left],
            [0, 1, top],
        ],
1151
        dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
1152
1153
1154
1155
1156
    )

    height = spatial_size[0] + top + bottom
    width = spatial_size[1] + left + right

1157
1158
1159
    expected_bboxes = reference_affine_bounding_box_helper(
        bounding_box, format=format, spatial_size=(height, width), affine_matrix=affine_matrix
    )
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
    return expected_bboxes, (height, width)


def reference_inputs_pad_bounding_box():
    for bounding_box_loader, padding in itertools.product(
        make_bounding_box_loaders(extra_dims=((), (4,))), [1, (1,), (1, 2), (1, 2, 3, 4), [1], [1, 2], [1, 2, 3, 4]]
    ):
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
            spatial_size=bounding_box_loader.spatial_size,
            padding=padding,
            padding_mode="constant",
        )


1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
def pad_xfail_jit_fill_condition(args_kwargs):
    fill = args_kwargs.kwargs.get("fill")
    if not isinstance(fill, (list, tuple)):
        return False
    elif isinstance(fill, tuple):
        return True
    else:  # isinstance(fill, list):
        return all(isinstance(f, int) for f in fill)


1186
1187
1188
1189
1190
1191
1192
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.pad_image_tensor,
            sample_inputs_fn=sample_inputs_pad_image_tensor,
            reference_fn=pil_reference_wrapper(F.pad_image_pil),
            reference_inputs_fn=reference_inputs_pad_image_tensor,
1193
1194
            float32_vs_uint8=float32_vs_uint8_fill_adapter,
            closeness_kwargs=float32_vs_uint8_pixel_difference(),
1195
            test_marks=[
1196
1197
1198
1199
                xfail_jit_python_scalar_arg("padding"),
                xfail_jit(
                    "F.pad only supports vector fills for list of floats", condition=pad_xfail_jit_fill_condition
                ),
1200
            ],
1201
1202
1203
1204
        ),
        KernelInfo(
            F.pad_bounding_box,
            sample_inputs_fn=sample_inputs_pad_bounding_box,
1205
1206
            reference_fn=reference_pad_bounding_box,
            reference_inputs_fn=reference_inputs_pad_bounding_box,
1207
            test_marks=[
1208
                xfail_jit_python_scalar_arg("padding"),
1209
            ],
1210
1211
1212
1213
1214
1215
        ),
        KernelInfo(
            F.pad_mask,
            sample_inputs_fn=sample_inputs_pad_mask,
            reference_fn=pil_reference_wrapper(F.pad_image_pil),
            reference_inputs_fn=reference_inputs_pad_mask,
1216
            float32_vs_uint8=float32_vs_uint8_fill_adapter,
1217
        ),
1218
1219
1220
1221
        KernelInfo(
            F.pad_video,
            sample_inputs_fn=sample_inputs_pad_video,
        ),
1222
1223
1224
1225
1226
1227
1228
    ]
)

_PERSPECTIVE_COEFFS = [
    [1.2405, 0.1772, -6.9113, 0.0463, 1.251, -5.235, 0.00013, 0.0018],
    [0.7366, -0.11724, 1.45775, -0.15012, 0.73406, 2.6019, -0.0072, -0.0063],
]
1229
1230
_STARTPOINTS = [[0, 1], [2, 3], [4, 5], [6, 7]]
_ENDPOINTS = [[9, 8], [7, 6], [5, 4], [3, 2]]
1231
1232
1233


def sample_inputs_perspective_image_tensor():
1234
    for image_loader in make_image_loaders(sizes=["random"]):
1235
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
1236
1237
1238
1239
1240
            yield ArgsKwargs(
                image_loader, startpoints=None, endpoints=None, fill=fill, coefficients=_PERSPECTIVE_COEFFS[0]
            )

    yield ArgsKwargs(make_image_loader(), startpoints=_STARTPOINTS, endpoints=_ENDPOINTS)
1241
1242
1243


def reference_inputs_perspective_image_tensor():
1244
1245
1246
1247
1248
1249
1250
    for image_loader, coefficients, interpolation in itertools.product(
        make_image_loaders_for_interpolation(),
        _PERSPECTIVE_COEFFS,
        [
            F.InterpolationMode.NEAREST,
            F.InterpolationMode.BILINEAR,
        ],
1251
1252
    ):
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
1253
1254
1255
1256
            # FIXME: PIL kernel doesn't support sequences of length 1 if the number of channels is larger. Shouldn't it?
            if isinstance(fill, (list, tuple)):
                continue

1257
1258
1259
1260
1261
1262
1263
1264
            yield ArgsKwargs(
                image_loader,
                startpoints=None,
                endpoints=None,
                interpolation=interpolation,
                fill=fill,
                coefficients=coefficients,
            )
1265
1266
1267
1268
1269


def sample_inputs_perspective_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders():
        yield ArgsKwargs(
1270
1271
            bounding_box_loader,
            format=bounding_box_loader.format,
1272
            spatial_size=bounding_box_loader.spatial_size,
1273
1274
1275
            startpoints=None,
            endpoints=None,
            coefficients=_PERSPECTIVE_COEFFS[0],
1276
1277
        )

1278
    format = datapoints.BoundingBoxFormat.XYXY
1279
    loader = make_bounding_box_loader(format=format)
1280
    yield ArgsKwargs(
1281
        loader, format=format, spatial_size=loader.spatial_size, startpoints=_STARTPOINTS, endpoints=_ENDPOINTS
1282
1283
    )

1284
1285

def sample_inputs_perspective_mask():
1286
    for mask_loader in make_mask_loaders(sizes=["random"]):
1287
1288
1289
        yield ArgsKwargs(mask_loader, startpoints=None, endpoints=None, coefficients=_PERSPECTIVE_COEFFS[0])

    yield ArgsKwargs(make_detection_mask_loader(), startpoints=_STARTPOINTS, endpoints=_ENDPOINTS)
1290
1291
1292
1293
1294
1295


def reference_inputs_perspective_mask():
    for mask_loader, perspective_coeffs in itertools.product(
        make_mask_loaders(extra_dims=[()], num_objects=[1]), _PERSPECTIVE_COEFFS
    ):
1296
        yield ArgsKwargs(mask_loader, startpoints=None, endpoints=None, coefficients=perspective_coeffs)
1297
1298


1299
1300
def sample_inputs_perspective_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
1301
1302
1303
        yield ArgsKwargs(video_loader, startpoints=None, endpoints=None, coefficients=_PERSPECTIVE_COEFFS[0])

    yield ArgsKwargs(make_video_loader(), startpoints=_STARTPOINTS, endpoints=_ENDPOINTS)
1304
1305


1306
1307
1308
1309
1310
1311
1312
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.perspective_image_tensor,
            sample_inputs_fn=sample_inputs_perspective_image_tensor,
            reference_fn=pil_reference_wrapper(F.perspective_image_pil),
            reference_inputs_fn=reference_inputs_perspective_image_tensor,
1313
            float32_vs_uint8=float32_vs_uint8_fill_adapter,
1314
            closeness_kwargs={
1315
                **pil_reference_pixel_difference(2, mae=True),
1316
1317
                **cuda_vs_cpu_pixel_difference(),
                **float32_vs_uint8_pixel_difference(),
1318
1319
                **scripted_vs_eager_float64_tolerances("cpu", atol=1e-5, rtol=1e-5),
                **scripted_vs_eager_float64_tolerances("cuda", atol=1e-5, rtol=1e-5),
1320
            },
1321
            test_marks=[xfail_jit_python_scalar_arg("fill")],
1322
1323
1324
1325
        ),
        KernelInfo(
            F.perspective_bounding_box,
            sample_inputs_fn=sample_inputs_perspective_bounding_box,
1326
1327
1328
1329
            closeness_kwargs={
                **scripted_vs_eager_float64_tolerances("cpu", atol=1e-6, rtol=1e-6),
                **scripted_vs_eager_float64_tolerances("cuda", atol=1e-6, rtol=1e-6),
            },
1330
1331
1332
1333
1334
1335
        ),
        KernelInfo(
            F.perspective_mask,
            sample_inputs_fn=sample_inputs_perspective_mask,
            reference_fn=pil_reference_wrapper(F.perspective_image_pil),
            reference_inputs_fn=reference_inputs_perspective_mask,
1336
1337
1338
1339
            float32_vs_uint8=True,
            closeness_kwargs={
                (("TestKernels", "test_against_reference"), torch.uint8, "cpu"): dict(atol=10, rtol=0),
            },
1340
1341
1342
1343
        ),
        KernelInfo(
            F.perspective_video,
            sample_inputs_fn=sample_inputs_perspective_video,
1344
1345
            closeness_kwargs={
                **cuda_vs_cpu_pixel_difference(),
1346
1347
                **scripted_vs_eager_float64_tolerances("cpu", atol=1e-5, rtol=1e-5),
                **scripted_vs_eager_float64_tolerances("cuda", atol=1e-5, rtol=1e-5),
1348
            },
1349
1350
1351
1352
1353
        ),
    ]
)


1354
1355
def _get_elastic_displacement(spatial_size):
    return torch.rand(1, *spatial_size, 2)
1356
1357
1358


def sample_inputs_elastic_image_tensor():
1359
    for image_loader in make_image_loaders(sizes=["random"]):
1360
        displacement = _get_elastic_displacement(image_loader.spatial_size)
1361
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
1362
1363
1364
1365
1366
            yield ArgsKwargs(image_loader, displacement=displacement, fill=fill)


def reference_inputs_elastic_image_tensor():
    for image_loader, interpolation in itertools.product(
1367
        make_image_loaders_for_interpolation(),
1368
1369
1370
1371
1372
1373
        [
            F.InterpolationMode.NEAREST,
            F.InterpolationMode.BILINEAR,
            F.InterpolationMode.BICUBIC,
        ],
    ):
1374
        displacement = _get_elastic_displacement(image_loader.spatial_size)
1375
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
1376
1377
1378
1379
1380
            yield ArgsKwargs(image_loader, interpolation=interpolation, displacement=displacement, fill=fill)


def sample_inputs_elastic_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders():
1381
        displacement = _get_elastic_displacement(bounding_box_loader.spatial_size)
1382
1383
1384
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
1385
            spatial_size=bounding_box_loader.spatial_size,
1386
1387
1388
1389
1390
            displacement=displacement,
        )


def sample_inputs_elastic_mask():
1391
    for mask_loader in make_mask_loaders(sizes=["random"]):
1392
1393
1394
1395
        displacement = _get_elastic_displacement(mask_loader.shape[-2:])
        yield ArgsKwargs(mask_loader, displacement=displacement)


1396
1397
1398
1399
1400
1401
def sample_inputs_elastic_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        displacement = _get_elastic_displacement(video_loader.shape[-2:])
        yield ArgsKwargs(video_loader, displacement=displacement)


1402
1403
1404
1405
1406
1407
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.elastic_image_tensor,
            sample_inputs_fn=sample_inputs_elastic_image_tensor,
            reference_inputs_fn=reference_inputs_elastic_image_tensor,
1408
            float32_vs_uint8=float32_vs_uint8_fill_adapter,
1409
            closeness_kwargs={
1410
                **float32_vs_uint8_pixel_difference(6, mae=True),
1411
1412
                **cuda_vs_cpu_pixel_difference(),
            },
1413
            test_marks=[xfail_jit_python_scalar_arg("fill")],
1414
1415
1416
1417
1418
1419
1420
1421
        ),
        KernelInfo(
            F.elastic_bounding_box,
            sample_inputs_fn=sample_inputs_elastic_bounding_box,
        ),
        KernelInfo(
            F.elastic_mask,
            sample_inputs_fn=sample_inputs_elastic_mask,
1422
1423
1424
1425
        ),
        KernelInfo(
            F.elastic_video,
            sample_inputs_fn=sample_inputs_elastic_video,
1426
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
1427
1428
1429
1430
1431
        ),
    ]
)


1432
_CENTER_CROP_SPATIAL_SIZES = [(16, 16), (7, 33), (31, 9)]
1433
_CENTER_CROP_OUTPUT_SIZES = [[4, 3], [42, 70], [4], 3, (5, 2), (6,)]
1434
1435
1436
1437


def sample_inputs_center_crop_image_tensor():
    for image_loader, output_size in itertools.product(
1438
        make_image_loaders(sizes=[(16, 17)], color_spaces=["RGB"], dtypes=[torch.float32]),
1439
1440
1441
1442
1443
1444
        [
            # valid `output_size` types for which cropping is applied to both dimensions
            *[5, (4,), (2, 3), [6], [3, 2]],
            # `output_size`'s for which at least one dimension needs to be padded
            *[[4, 18], [17, 5], [17, 18]],
        ],
1445
1446
1447
1448
1449
1450
    ):
        yield ArgsKwargs(image_loader, output_size=output_size)


def reference_inputs_center_crop_image_tensor():
    for image_loader, output_size in itertools.product(
1451
1452
        make_image_loaders(sizes=_CENTER_CROP_SPATIAL_SIZES, extra_dims=[()], dtypes=[torch.uint8]),
        _CENTER_CROP_OUTPUT_SIZES,
1453
1454
1455
1456
1457
1458
1459
1460
1461
    ):
        yield ArgsKwargs(image_loader, output_size=output_size)


def sample_inputs_center_crop_bounding_box():
    for bounding_box_loader, output_size in itertools.product(make_bounding_box_loaders(), _CENTER_CROP_OUTPUT_SIZES):
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
1462
            spatial_size=bounding_box_loader.spatial_size,
1463
1464
1465
1466
1467
            output_size=output_size,
        )


def sample_inputs_center_crop_mask():
1468
1469
1470
    for mask_loader in make_mask_loaders(sizes=["random"], num_categories=["random"], num_objects=["random"]):
        height, width = mask_loader.shape[-2:]
        yield ArgsKwargs(mask_loader, output_size=(height // 2, width // 2))
1471
1472
1473
1474


def reference_inputs_center_crop_mask():
    for mask_loader, output_size in itertools.product(
1475
        make_mask_loaders(sizes=_CENTER_CROP_SPATIAL_SIZES, extra_dims=[()], num_objects=[1]), _CENTER_CROP_OUTPUT_SIZES
1476
1477
1478
1479
    ):
        yield ArgsKwargs(mask_loader, output_size=output_size)


1480
1481
1482
1483
1484
1485
def sample_inputs_center_crop_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        height, width = video_loader.shape[-2:]
        yield ArgsKwargs(video_loader, output_size=(height // 2, width // 2))


1486
1487
1488
1489
1490
1491
1492
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.center_crop_image_tensor,
            sample_inputs_fn=sample_inputs_center_crop_image_tensor,
            reference_fn=pil_reference_wrapper(F.center_crop_image_pil),
            reference_inputs_fn=reference_inputs_center_crop_image_tensor,
1493
            float32_vs_uint8=True,
1494
            test_marks=[
1495
                xfail_jit_python_scalar_arg("output_size"),
1496
            ],
1497
1498
1499
1500
        ),
        KernelInfo(
            F.center_crop_bounding_box,
            sample_inputs_fn=sample_inputs_center_crop_bounding_box,
1501
            test_marks=[
1502
                xfail_jit_python_scalar_arg("output_size"),
1503
            ],
1504
1505
1506
1507
1508
1509
        ),
        KernelInfo(
            F.center_crop_mask,
            sample_inputs_fn=sample_inputs_center_crop_mask,
            reference_fn=pil_reference_wrapper(F.center_crop_image_pil),
            reference_inputs_fn=reference_inputs_center_crop_mask,
1510
            float32_vs_uint8=True,
1511
            test_marks=[
1512
                xfail_jit_python_scalar_arg("output_size"),
1513
            ],
1514
        ),
1515
1516
1517
1518
        KernelInfo(
            F.center_crop_video,
            sample_inputs_fn=sample_inputs_center_crop_video,
        ),
1519
1520
1521
1522
1523
    ]
)


def sample_inputs_gaussian_blur_image_tensor():
1524
    make_gaussian_blur_image_loaders = functools.partial(make_image_loaders, sizes=[(7, 33)], color_spaces=["RGB"])
1525
1526
1527
1528
1529
1530

    for image_loader, kernel_size in itertools.product(make_gaussian_blur_image_loaders(), [5, (3, 3), [3, 3]]):
        yield ArgsKwargs(image_loader, kernel_size=kernel_size)

    for image_loader, sigma in itertools.product(
        make_gaussian_blur_image_loaders(), [None, (3.0, 3.0), [2.0, 2.0], 4.0, [1.5], (3.14,)]
1531
    ):
1532
        yield ArgsKwargs(image_loader, kernel_size=5, sigma=sigma)
1533
1534


1535
def sample_inputs_gaussian_blur_video():
1536
    for video_loader in make_video_loaders(sizes=[(7, 33)], num_frames=[5]):
1537
1538
1539
1540
1541
1542
1543
1544
        yield ArgsKwargs(video_loader, kernel_size=[3, 3])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.gaussian_blur_image_tensor,
            sample_inputs_fn=sample_inputs_gaussian_blur_image_tensor,
1545
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
1546
1547
1548
1549
1550
1551
1552
1553
            test_marks=[
                xfail_jit_python_scalar_arg("kernel_size"),
                xfail_jit_python_scalar_arg("sigma"),
            ],
        ),
        KernelInfo(
            F.gaussian_blur_video,
            sample_inputs_fn=sample_inputs_gaussian_blur_video,
1554
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
1555
1556
        ),
    ]
1557
1558
1559
1560
)


def sample_inputs_equalize_image_tensor():
1561
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
1562
1563
1564
1565
        yield ArgsKwargs(image_loader)


def reference_inputs_equalize_image_tensor():
1566
1567
1568
    # We are not using `make_image_loaders` here since that uniformly samples the values over the whole value range.
    # Since the whole point of this kernel is to transform an arbitrary distribution of values into a uniform one,
    # the information gain is low if we already provide something really close to the expected value.
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
    def make_uniform_band_image(shape, dtype, device, *, low_factor, high_factor):
        if dtype.is_floating_point:
            low = low_factor
            high = high_factor
        else:
            max_value = torch.iinfo(dtype).max
            low = int(low_factor * max_value)
            high = int(high_factor * max_value)
        return torch.testing.make_tensor(shape, dtype=dtype, device=device, low=low, high=high)

    def make_beta_distributed_image(shape, dtype, device, *, alpha, beta):
        image = torch.distributions.Beta(alpha, beta).sample(shape)
        if not dtype.is_floating_point:
            image.mul_(torch.iinfo(dtype).max).round_()
        return image.to(dtype=dtype, device=device)

1585
    spatial_size = (256, 256)
1586
    for dtype, color_space, fn in itertools.product(
1587
        [torch.uint8],
1588
        ["GRAY", "RGB"],
1589
        [
1590
1591
1592
1593
            lambda shape, dtype, device: torch.zeros(shape, dtype=dtype, device=device),
            lambda shape, dtype, device: torch.full(
                shape, 1.0 if dtype.is_floating_point else torch.iinfo(dtype).max, dtype=dtype, device=device
            ),
1594
            *[
1595
1596
1597
1598
1599
                functools.partial(make_uniform_band_image, low_factor=low_factor, high_factor=high_factor)
                for low_factor, high_factor in [
                    (0.0, 0.25),
                    (0.25, 0.75),
                    (0.75, 1.0),
1600
1601
1602
                ]
            ],
            *[
1603
                functools.partial(make_beta_distributed_image, alpha=alpha, beta=beta)
1604
1605
1606
1607
1608
1609
1610
1611
                for alpha, beta in [
                    (0.5, 0.5),
                    (2, 2),
                    (2, 5),
                    (5, 2),
                ]
            ],
        ],
1612
    ):
1613
        image_loader = ImageLoader(fn, shape=(get_num_channels(color_space), *spatial_size), dtype=dtype)
1614
1615
1616
        yield ArgsKwargs(image_loader)


1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
def sample_inputs_equalize_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.equalize_image_tensor,
            kernel_name="equalize_image_tensor",
            sample_inputs_fn=sample_inputs_equalize_image_tensor,
            reference_fn=pil_reference_wrapper(F.equalize_image_pil),
1629
            float32_vs_uint8=True,
1630
1631
1632
1633
1634
1635
1636
            reference_inputs_fn=reference_inputs_equalize_image_tensor,
        ),
        KernelInfo(
            F.equalize_video,
            sample_inputs_fn=sample_inputs_equalize_video,
        ),
    ]
1637
1638
1639
1640
)


def sample_inputs_invert_image_tensor():
1641
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
1642
1643
1644
1645
        yield ArgsKwargs(image_loader)


def reference_inputs_invert_image_tensor():
1646
    for image_loader in make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]):
1647
1648
1649
        yield ArgsKwargs(image_loader)


1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
def sample_inputs_invert_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.invert_image_tensor,
            kernel_name="invert_image_tensor",
            sample_inputs_fn=sample_inputs_invert_image_tensor,
            reference_fn=pil_reference_wrapper(F.invert_image_pil),
            reference_inputs_fn=reference_inputs_invert_image_tensor,
1663
            float32_vs_uint8=True,
1664
1665
1666
1667
1668
1669
        ),
        KernelInfo(
            F.invert_video,
            sample_inputs_fn=sample_inputs_invert_video,
        ),
    ]
1670
1671
1672
1673
1674
1675
1676
)


_POSTERIZE_BITS = [1, 4, 8]


def sample_inputs_posterize_image_tensor():
1677
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
1678
1679
1680
1681
1682
        yield ArgsKwargs(image_loader, bits=_POSTERIZE_BITS[0])


def reference_inputs_posterize_image_tensor():
    for image_loader, bits in itertools.product(
1683
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1684
1685
1686
1687
1688
        _POSTERIZE_BITS,
    ):
        yield ArgsKwargs(image_loader, bits=bits)


1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
def sample_inputs_posterize_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, bits=_POSTERIZE_BITS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.posterize_image_tensor,
            kernel_name="posterize_image_tensor",
            sample_inputs_fn=sample_inputs_posterize_image_tensor,
            reference_fn=pil_reference_wrapper(F.posterize_image_pil),
            reference_inputs_fn=reference_inputs_posterize_image_tensor,
1702
1703
            float32_vs_uint8=True,
            closeness_kwargs=float32_vs_uint8_pixel_difference(),
1704
1705
1706
1707
1708
1709
        ),
        KernelInfo(
            F.posterize_video,
            sample_inputs_fn=sample_inputs_posterize_video,
        ),
    ]
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
)


def _get_solarize_thresholds(dtype):
    for factor in [0.1, 0.5]:
        max_value = get_max_value(dtype)
        yield (float if dtype.is_floating_point else int)(max_value * factor)


def sample_inputs_solarize_image_tensor():
1720
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
1721
1722
1723
1724
        yield ArgsKwargs(image_loader, threshold=next(_get_solarize_thresholds(image_loader.dtype)))


def reference_inputs_solarize_image_tensor():
1725
    for image_loader in make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]):
1726
1727
1728
1729
        for threshold in _get_solarize_thresholds(image_loader.dtype):
            yield ArgsKwargs(image_loader, threshold=threshold)


1730
1731
1732
1733
def uint8_to_float32_threshold_adapter(other_args, kwargs):
    return other_args, dict(threshold=kwargs["threshold"] / 255)


1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
def sample_inputs_solarize_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, threshold=next(_get_solarize_thresholds(video_loader.dtype)))


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.solarize_image_tensor,
            kernel_name="solarize_image_tensor",
            sample_inputs_fn=sample_inputs_solarize_image_tensor,
            reference_fn=pil_reference_wrapper(F.solarize_image_pil),
            reference_inputs_fn=reference_inputs_solarize_image_tensor,
1747
1748
            float32_vs_uint8=uint8_to_float32_threshold_adapter,
            closeness_kwargs=float32_vs_uint8_pixel_difference(),
1749
1750
1751
1752
1753
1754
        ),
        KernelInfo(
            F.solarize_video,
            sample_inputs_fn=sample_inputs_solarize_video,
        ),
    ]
1755
1756
1757
1758
)


def sample_inputs_autocontrast_image_tensor():
1759
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
1760
1761
1762
1763
        yield ArgsKwargs(image_loader)


def reference_inputs_autocontrast_image_tensor():
1764
    for image_loader in make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]):
1765
1766
1767
        yield ArgsKwargs(image_loader)


1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
def sample_inputs_autocontrast_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.autocontrast_image_tensor,
            kernel_name="autocontrast_image_tensor",
            sample_inputs_fn=sample_inputs_autocontrast_image_tensor,
            reference_fn=pil_reference_wrapper(F.autocontrast_image_pil),
            reference_inputs_fn=reference_inputs_autocontrast_image_tensor,
1781
1782
1783
1784
1785
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(),
                **float32_vs_uint8_pixel_difference(),
            },
1786
1787
1788
1789
1790
1791
        ),
        KernelInfo(
            F.autocontrast_video,
            sample_inputs_fn=sample_inputs_autocontrast_video,
        ),
    ]
1792
1793
1794
1795
1796
1797
1798
1799
)

_ADJUST_SHARPNESS_FACTORS = [0.1, 0.5]


def sample_inputs_adjust_sharpness_image_tensor():
    for image_loader in make_image_loaders(
        sizes=["random", (2, 2)],
1800
        color_spaces=("GRAY", "RGB"),
1801
1802
1803
1804
1805
1806
    ):
        yield ArgsKwargs(image_loader, sharpness_factor=_ADJUST_SHARPNESS_FACTORS[0])


def reference_inputs_adjust_sharpness_image_tensor():
    for image_loader, sharpness_factor in itertools.product(
1807
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1808
1809
1810
1811
1812
        _ADJUST_SHARPNESS_FACTORS,
    ):
        yield ArgsKwargs(image_loader, sharpness_factor=sharpness_factor)


1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
def sample_inputs_adjust_sharpness_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, sharpness_factor=_ADJUST_SHARPNESS_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_sharpness_image_tensor,
            kernel_name="adjust_sharpness_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_sharpness_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_sharpness_image_pil),
            reference_inputs_fn=reference_inputs_adjust_sharpness_image_tensor,
1826
1827
            float32_vs_uint8=True,
            closeness_kwargs=float32_vs_uint8_pixel_difference(2),
1828
1829
1830
1831
1832
1833
        ),
        KernelInfo(
            F.adjust_sharpness_video,
            sample_inputs_fn=sample_inputs_adjust_sharpness_video,
        ),
    ]
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
)


def sample_inputs_erase_image_tensor():
    for image_loader in make_image_loaders(sizes=["random"]):
        # FIXME: make the parameters more diverse
        h, w = 6, 7
        v = torch.rand(image_loader.num_channels, h, w)
        yield ArgsKwargs(image_loader, i=1, j=2, h=h, w=w, v=v)


1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
def sample_inputs_erase_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        # FIXME: make the parameters more diverse
        h, w = 6, 7
        v = torch.rand(video_loader.num_channels, h, w)
        yield ArgsKwargs(video_loader, i=1, j=2, h=h, w=w, v=v)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.erase_image_tensor,
            kernel_name="erase_image_tensor",
            sample_inputs_fn=sample_inputs_erase_image_tensor,
        ),
        KernelInfo(
            F.erase_video,
            sample_inputs_fn=sample_inputs_erase_video,
        ),
    ]
1865
)
1866
1867
1868
1869
1870

_ADJUST_BRIGHTNESS_FACTORS = [0.1, 0.5]


def sample_inputs_adjust_brightness_image_tensor():
1871
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
1872
1873
1874
1875
1876
        yield ArgsKwargs(image_loader, brightness_factor=_ADJUST_BRIGHTNESS_FACTORS[0])


def reference_inputs_adjust_brightness_image_tensor():
    for image_loader, brightness_factor in itertools.product(
1877
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1878
1879
1880
1881
1882
        _ADJUST_BRIGHTNESS_FACTORS,
    ):
        yield ArgsKwargs(image_loader, brightness_factor=brightness_factor)


1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
def sample_inputs_adjust_brightness_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, brightness_factor=_ADJUST_BRIGHTNESS_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_brightness_image_tensor,
            kernel_name="adjust_brightness_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_brightness_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_brightness_image_pil),
            reference_inputs_fn=reference_inputs_adjust_brightness_image_tensor,
1896
1897
            float32_vs_uint8=True,
            closeness_kwargs=float32_vs_uint8_pixel_difference(),
1898
1899
1900
1901
1902
1903
        ),
        KernelInfo(
            F.adjust_brightness_video,
            sample_inputs_fn=sample_inputs_adjust_brightness_video,
        ),
    ]
1904
1905
1906
1907
1908
1909
1910
)


_ADJUST_CONTRAST_FACTORS = [0.1, 0.5]


def sample_inputs_adjust_contrast_image_tensor():
1911
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
1912
1913
1914
1915
1916
        yield ArgsKwargs(image_loader, contrast_factor=_ADJUST_CONTRAST_FACTORS[0])


def reference_inputs_adjust_contrast_image_tensor():
    for image_loader, contrast_factor in itertools.product(
1917
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1918
1919
1920
1921
1922
        _ADJUST_CONTRAST_FACTORS,
    ):
        yield ArgsKwargs(image_loader, contrast_factor=contrast_factor)


1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
def sample_inputs_adjust_contrast_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, contrast_factor=_ADJUST_CONTRAST_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_contrast_image_tensor,
            kernel_name="adjust_contrast_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_contrast_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_contrast_image_pil),
            reference_inputs_fn=reference_inputs_adjust_contrast_image_tensor,
1936
1937
1938
1939
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(),
                **float32_vs_uint8_pixel_difference(2),
1940
                **cuda_vs_cpu_pixel_difference(),
1941
                (("TestKernels", "test_against_reference"), torch.uint8, "cpu"): pixel_difference_closeness_kwargs(1),
1942
            },
1943
1944
1945
1946
        ),
        KernelInfo(
            F.adjust_contrast_video,
            sample_inputs_fn=sample_inputs_adjust_contrast_video,
1947
1948
1949
1950
            closeness_kwargs={
                **cuda_vs_cpu_pixel_difference(),
                (("TestKernels", "test_against_reference"), torch.uint8, "cpu"): pixel_difference_closeness_kwargs(1),
            },
1951
1952
        ),
    ]
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
)

_ADJUST_GAMMA_GAMMAS_GAINS = [
    (0.5, 2.0),
    (0.0, 1.0),
]


def sample_inputs_adjust_gamma_image_tensor():
    gamma, gain = _ADJUST_GAMMA_GAMMAS_GAINS[0]
1963
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
1964
1965
1966
1967
1968
        yield ArgsKwargs(image_loader, gamma=gamma, gain=gain)


def reference_inputs_adjust_gamma_image_tensor():
    for image_loader, (gamma, gain) in itertools.product(
1969
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1970
1971
1972
1973
1974
        _ADJUST_GAMMA_GAMMAS_GAINS,
    ):
        yield ArgsKwargs(image_loader, gamma=gamma, gain=gain)


1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
def sample_inputs_adjust_gamma_video():
    gamma, gain = _ADJUST_GAMMA_GAMMAS_GAINS[0]
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, gamma=gamma, gain=gain)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_gamma_image_tensor,
            kernel_name="adjust_gamma_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_gamma_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_gamma_image_pil),
            reference_inputs_fn=reference_inputs_adjust_gamma_image_tensor,
1989
1990
1991
1992
1993
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(),
                **float32_vs_uint8_pixel_difference(),
            },
1994
1995
1996
1997
1998
1999
        ),
        KernelInfo(
            F.adjust_gamma_video,
            sample_inputs_fn=sample_inputs_adjust_gamma_video,
        ),
    ]
2000
2001
2002
2003
2004
2005
2006
)


_ADJUST_HUE_FACTORS = [-0.1, 0.5]


def sample_inputs_adjust_hue_image_tensor():
2007
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
2008
2009
2010
2011
2012
        yield ArgsKwargs(image_loader, hue_factor=_ADJUST_HUE_FACTORS[0])


def reference_inputs_adjust_hue_image_tensor():
    for image_loader, hue_factor in itertools.product(
2013
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
2014
2015
2016
2017
2018
        _ADJUST_HUE_FACTORS,
    ):
        yield ArgsKwargs(image_loader, hue_factor=hue_factor)


2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
def sample_inputs_adjust_hue_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, hue_factor=_ADJUST_HUE_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_hue_image_tensor,
            kernel_name="adjust_hue_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_hue_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_hue_image_pil),
            reference_inputs_fn=reference_inputs_adjust_hue_image_tensor,
2032
2033
            float32_vs_uint8=True,
            closeness_kwargs={
2034
                **pil_reference_pixel_difference(2, mae=True),
2035
2036
                **float32_vs_uint8_pixel_difference(),
            },
2037
2038
2039
2040
2041
2042
        ),
        KernelInfo(
            F.adjust_hue_video,
            sample_inputs_fn=sample_inputs_adjust_hue_video,
        ),
    ]
2043
2044
2045
2046
2047
2048
)

_ADJUST_SATURATION_FACTORS = [0.1, 0.5]


def sample_inputs_adjust_saturation_image_tensor():
2049
    for image_loader in make_image_loaders(sizes=["random"], color_spaces=("GRAY", "RGB")):
2050
2051
2052
2053
2054
        yield ArgsKwargs(image_loader, saturation_factor=_ADJUST_SATURATION_FACTORS[0])


def reference_inputs_adjust_saturation_image_tensor():
    for image_loader, saturation_factor in itertools.product(
2055
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
2056
2057
2058
2059
2060
        _ADJUST_SATURATION_FACTORS,
    ):
        yield ArgsKwargs(image_loader, saturation_factor=saturation_factor)


2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
def sample_inputs_adjust_saturation_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader, saturation_factor=_ADJUST_SATURATION_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_saturation_image_tensor,
            kernel_name="adjust_saturation_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_saturation_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_saturation_image_pil),
            reference_inputs_fn=reference_inputs_adjust_saturation_image_tensor,
2074
2075
2076
2077
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(),
                **float32_vs_uint8_pixel_difference(2),
2078
                **cuda_vs_cpu_pixel_difference(),
2079
            },
2080
2081
2082
2083
        ),
        KernelInfo(
            F.adjust_saturation_video,
            sample_inputs_fn=sample_inputs_adjust_saturation_video,
2084
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
2085
2086
        ),
    ]
2087
2088
2089
2090
2091
2092
)


def sample_inputs_clamp_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders():
        yield ArgsKwargs(
2093
            bounding_box_loader,
2094
2095
            format=bounding_box_loader.format,
            spatial_size=bounding_box_loader.spatial_size,
2096
2097
2098
2099
2100
2101
2102
        )


KERNEL_INFOS.append(
    KernelInfo(
        F.clamp_bounding_box,
        sample_inputs_fn=sample_inputs_clamp_bounding_box,
2103
        logs_usage=True,
2104
2105
2106
2107
2108
2109
    )
)

_FIVE_TEN_CROP_SIZES = [7, (6,), [5], (6, 5), [7, 6]]


2110
def _get_five_ten_crop_spatial_size(size):
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
    if isinstance(size, int):
        crop_height = crop_width = size
    elif len(size) == 1:
        crop_height = crop_width = size[0]
    else:
        crop_height, crop_width = size
    return 2 * crop_height, 2 * crop_width


def sample_inputs_five_crop_image_tensor():
    for size in _FIVE_TEN_CROP_SIZES:
2122
        for image_loader in make_image_loaders(
2123
            sizes=[_get_five_ten_crop_spatial_size(size)],
2124
            color_spaces=["RGB"],
2125
            dtypes=[torch.float32],
2126
        ):
2127
2128
2129
2130
2131
            yield ArgsKwargs(image_loader, size=size)


def reference_inputs_five_crop_image_tensor():
    for size in _FIVE_TEN_CROP_SIZES:
2132
2133
2134
        for image_loader in make_image_loaders(
            sizes=[_get_five_ten_crop_spatial_size(size)], extra_dims=[()], dtypes=[torch.uint8]
        ):
2135
2136
2137
            yield ArgsKwargs(image_loader, size=size)


2138
2139
2140
2141
2142
2143
def sample_inputs_five_crop_video():
    size = _FIVE_TEN_CROP_SIZES[0]
    for video_loader in make_video_loaders(sizes=[_get_five_ten_crop_spatial_size(size)]):
        yield ArgsKwargs(video_loader, size=size)


2144
2145
def sample_inputs_ten_crop_image_tensor():
    for size, vertical_flip in itertools.product(_FIVE_TEN_CROP_SIZES, [False, True]):
2146
        for image_loader in make_image_loaders(
2147
            sizes=[_get_five_ten_crop_spatial_size(size)],
2148
            color_spaces=["RGB"],
2149
            dtypes=[torch.float32],
2150
        ):
2151
2152
2153
2154
2155
            yield ArgsKwargs(image_loader, size=size, vertical_flip=vertical_flip)


def reference_inputs_ten_crop_image_tensor():
    for size, vertical_flip in itertools.product(_FIVE_TEN_CROP_SIZES, [False, True]):
2156
2157
2158
        for image_loader in make_image_loaders(
            sizes=[_get_five_ten_crop_spatial_size(size)], extra_dims=[()], dtypes=[torch.uint8]
        ):
2159
2160
2161
            yield ArgsKwargs(image_loader, size=size, vertical_flip=vertical_flip)


2162
2163
2164
2165
2166
2167
def sample_inputs_ten_crop_video():
    size = _FIVE_TEN_CROP_SIZES[0]
    for video_loader in make_video_loaders(sizes=[_get_five_ten_crop_spatial_size(size)]):
        yield ArgsKwargs(video_loader, size=size)


2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
def multi_crop_pil_reference_wrapper(pil_kernel):
    def wrapper(input_tensor, *other_args, **kwargs):
        output = pil_reference_wrapper(pil_kernel)(input_tensor, *other_args, **kwargs)
        return type(output)(
            F.convert_dtype_image_tensor(F.to_image_tensor(output_pil), dtype=input_tensor.dtype)
            for output_pil in output
        )

    return wrapper


2179
2180
2181
2182
2183
_common_five_ten_crop_marks = [
    xfail_jit_python_scalar_arg("size"),
    mark_framework_limitation(("TestKernels", "test_batched_vs_single"), "Custom batching needed."),
]

2184
2185
2186
2187
2188
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.five_crop_image_tensor,
            sample_inputs_fn=sample_inputs_five_crop_image_tensor,
2189
            reference_fn=multi_crop_pil_reference_wrapper(F.five_crop_image_pil),
2190
            reference_inputs_fn=reference_inputs_five_crop_image_tensor,
2191
            test_marks=_common_five_ten_crop_marks,
2192
        ),
2193
2194
2195
2196
2197
        KernelInfo(
            F.five_crop_video,
            sample_inputs_fn=sample_inputs_five_crop_video,
            test_marks=_common_five_ten_crop_marks,
        ),
2198
2199
2200
        KernelInfo(
            F.ten_crop_image_tensor,
            sample_inputs_fn=sample_inputs_ten_crop_image_tensor,
2201
            reference_fn=multi_crop_pil_reference_wrapper(F.ten_crop_image_pil),
2202
            reference_inputs_fn=reference_inputs_ten_crop_image_tensor,
2203
            test_marks=_common_five_ten_crop_marks,
2204
        ),
2205
2206
2207
2208
2209
        KernelInfo(
            F.ten_crop_video,
            sample_inputs_fn=sample_inputs_ten_crop_video,
            test_marks=_common_five_ten_crop_marks,
        ),
2210
2211
2212
2213
2214
2215
    ]
)

_NORMALIZE_MEANS_STDS = [
    ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
    ([0.0, 0.0, 0.0], [1.0, 1.0, 1.0]),
2216
    (0.5, 2.0),
2217
2218
2219
2220
2221
]


def sample_inputs_normalize_image_tensor():
    for image_loader, (mean, std) in itertools.product(
2222
        make_image_loaders(sizes=["random"], color_spaces=["RGB"], dtypes=[torch.float32]),
2223
2224
2225
2226
2227
        _NORMALIZE_MEANS_STDS,
    ):
        yield ArgsKwargs(image_loader, mean=mean, std=std)


2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
def reference_normalize_image_tensor(image, mean, std, inplace=False):
    mean = torch.tensor(mean).view(-1, 1, 1)
    std = torch.tensor(std).view(-1, 1, 1)

    sub = torch.Tensor.sub_ if inplace else torch.Tensor.sub
    return sub(image, mean).div_(std)


def reference_inputs_normalize_image_tensor():
    yield ArgsKwargs(
2238
        make_image_loader(size=(32, 32), color_space="RGB", extra_dims=[1]),
2239
2240
2241
2242
2243
        mean=[0.5, 0.5, 0.5],
        std=[1.0, 1.0, 1.0],
    )


2244
2245
2246
def sample_inputs_normalize_video():
    mean, std = _NORMALIZE_MEANS_STDS[0]
    for video_loader in make_video_loaders(
2247
        sizes=["random"], color_spaces=["RGB"], num_frames=["random"], dtypes=[torch.float32]
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
    ):
        yield ArgsKwargs(video_loader, mean=mean, std=std)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.normalize_image_tensor,
            kernel_name="normalize_image_tensor",
            sample_inputs_fn=sample_inputs_normalize_image_tensor,
2258
2259
            reference_fn=reference_normalize_image_tensor,
            reference_inputs_fn=reference_inputs_normalize_image_tensor,
2260
2261
2262
2263
            test_marks=[
                xfail_jit_python_scalar_arg("mean"),
                xfail_jit_python_scalar_arg("std"),
            ],
2264
2265
2266
2267
2268
2269
        ),
        KernelInfo(
            F.normalize_video,
            sample_inputs_fn=sample_inputs_normalize_video,
        ),
    ]
2270
)
2271
2272


2273
def sample_inputs_convert_dtype_image_tensor():
2274
2275
2276
2277
2278
2279
2280
    for input_dtype, output_dtype in itertools.product(
        [torch.uint8, torch.int64, torch.float32, torch.float64], repeat=2
    ):
        if input_dtype.is_floating_point and output_dtype == torch.int64:
            # conversion cannot be performed safely
            continue

2281
        for image_loader in make_image_loaders(sizes=["random"], color_spaces=["RGB"], dtypes=[input_dtype]):
2282
2283
2284
            yield ArgsKwargs(image_loader, dtype=output_dtype)


2285
def reference_convert_dtype_image_tensor(image, dtype=torch.float):
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
    input_dtype = image.dtype
    output_dtype = dtype

    if output_dtype == input_dtype:
        return image

    def fn(value):
        if input_dtype.is_floating_point:
            if output_dtype.is_floating_point:
                return value
            else:
                return int(decimal.Decimal(value) * torch.iinfo(output_dtype).max)
        else:
            input_max_value = torch.iinfo(input_dtype).max

            if output_dtype.is_floating_point:
                return float(decimal.Decimal(value) / input_max_value)
            else:
                output_max_value = torch.iinfo(output_dtype).max

                if input_max_value > output_max_value:
                    factor = (input_max_value + 1) // (output_max_value + 1)
                    return value // factor
                else:
                    factor = (output_max_value + 1) // (input_max_value + 1)
                    return value * factor

    return torch.tensor(tree_map(fn, image.tolist()), dtype=dtype)


2316
def reference_inputs_convert_dtype_image_tensor():
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
    for input_dtype, output_dtype in itertools.product(
        [
            torch.uint8,
            torch.int16,
            torch.int32,
            torch.int64,
            torch.float16,
            torch.float32,
            torch.float64,
            torch.bfloat16,
        ],
        repeat=2,
    ):
        if (input_dtype == torch.float32 and output_dtype in {torch.int32, torch.int64}) or (
            input_dtype == torch.float64 and output_dtype == torch.int64
        ):
            continue

        if input_dtype.is_floating_point:
            data = [0.0, 0.5, 1.0]
        else:
            max_value = torch.iinfo(input_dtype).max
            data = [0, max_value // 2, max_value]
        image = torch.tensor(data, dtype=input_dtype)

        yield ArgsKwargs(image, dtype=output_dtype)


2345
2346
2347
2348
2349
def sample_inputs_convert_dtype_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=["random"]):
        yield ArgsKwargs(video_loader)


2350
2351
2352
2353
2354
skip_dtype_consistency = TestMark(
    ("TestKernels", "test_dtype_and_device_consistency"),
    pytest.mark.skip(reason="`convert_dtype_*` kernels convert the dtype by design"),
    condition=lambda args_kwargs: args_kwargs.args[0].dtype != args_kwargs.kwargs.get("dtype", torch.float32),
)
2355

2356
2357
2358
KERNEL_INFOS.extend(
    [
        KernelInfo(
2359
2360
2361
2362
            F.convert_dtype_image_tensor,
            sample_inputs_fn=sample_inputs_convert_dtype_image_tensor,
            reference_fn=reference_convert_dtype_image_tensor,
            reference_inputs_fn=reference_inputs_convert_dtype_image_tensor,
2363
            test_marks=[
2364
                skip_dtype_consistency,
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
                TestMark(
                    ("TestKernels", "test_against_reference"),
                    pytest.mark.xfail(reason="Conversion overflows"),
                    condition=lambda args_kwargs: (
                        args_kwargs.args[0].dtype in {torch.float16, torch.bfloat16}
                        and not args_kwargs.kwargs["dtype"].is_floating_point
                    )
                    or (
                        args_kwargs.args[0].dtype in {torch.int32, torch.int64}
                        and args_kwargs.kwargs["dtype"] == torch.float16
                    ),
                ),
            ],
        ),
2379
2380
2381
        KernelInfo(
            F.convert_dtype_video,
            sample_inputs_fn=sample_inputs_convert_dtype_video,
2382
2383
2384
            test_marks=[
                skip_dtype_consistency,
            ],
2385
        ),
2386
2387
    ]
)
2388
2389
2390
2391


def sample_inputs_uniform_temporal_subsample_video():
    for video_loader in make_video_loaders(sizes=["random"], num_frames=[4]):
2392
        yield ArgsKwargs(video_loader, num_samples=2)
2393
2394


2395
def reference_uniform_temporal_subsample_video(x, num_samples):
2396
2397
    # Copy-pasted from
    # https://github.com/facebookresearch/pytorchvideo/blob/c8d23d8b7e597586a9e2d18f6ed31ad8aa379a7a/pytorchvideo/transforms/functional.py#L19
2398
    t = x.shape[-4]
2399
2400
2401
2402
    assert num_samples > 0 and t > 0
    # Sample by nearest neighbor interpolation if num_samples > t.
    indices = torch.linspace(0, t - 1, num_samples)
    indices = torch.clamp(indices, 0, t - 1).long()
2403
    return torch.index_select(x, -4, indices)
2404
2405
2406


def reference_inputs_uniform_temporal_subsample_video():
2407
    for video_loader in make_video_loaders(sizes=["random"], color_spaces=["RGB"], num_frames=[10]):
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
        for num_samples in range(1, video_loader.shape[-4] + 1):
            yield ArgsKwargs(video_loader, num_samples)


KERNEL_INFOS.append(
    KernelInfo(
        F.uniform_temporal_subsample_video,
        sample_inputs_fn=sample_inputs_uniform_temporal_subsample_video,
        reference_fn=reference_uniform_temporal_subsample_video,
        reference_inputs_fn=reference_inputs_uniform_temporal_subsample_video,
    )
)