README.md 12.2 KB
Newer Older
1
2
3
4
5
6
# Image classification reference training scripts

This folder contains reference training scripts for image classification.
They serve as a log of how to train specific models, as provide baseline
training and evaluation scripts to quickly bootstrap research.

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Except otherwise noted, all models have been trained on 8x V100 GPUs with 
the following parameters:

| Parameter                | value  |
| ------------------------ | ------ |
| `--batch_size`           | `32`   |
| `--epochs`               | `90`   |
| `--lr`                   | `0.1`  |
| `--momentum`             | `0.9`  |
| `--wd`, `--weight-decay` | `1e-4` |
| `--lr-step-size`         | `30`   |
| `--lr-gamma`             | `0.1`  |

### AlexNet and VGG

Since `AlexNet` and the original `VGG` architectures do not include batch 
Sepehr Sameni's avatar
Sepehr Sameni committed
23
normalization, the default initial learning rate `--lr 0.1` is too high.
24
25

```
26
torchrun --nproc_per_node=8 train.py\
27
    --model $MODEL --lr 1e-2
28
29
30
31
32
```

Here `$MODEL` is one of `alexnet`, `vgg11`, `vgg13`, `vgg16` or `vgg19`. Note
that `vgg11_bn`, `vgg13_bn`, `vgg16_bn`, and `vgg19_bn` include batch
normalization and thus are trained with the default parameters.
33

34
35
36
37
### GoogLeNet

The weights of the GoogLeNet model are ported from the original paper rather than trained from scratch.

38
39
40
41
42
43
44
### Inception V3

The weights of the Inception V3 model are ported from the original paper rather than trained from scratch.

Since it expects tensors with a size of N x 3 x 299 x 299, to validate the model use the following command:

```
45
torchrun --nproc_per_node=8 train.py --model inception_v3\
46
47
48
      --val-resize-size 342 --val-crop-size 299 --train-crop-size 299 --test-only --pretrained
```

49
### ResNet
50
```
51
torchrun --nproc_per_node=8 train.py --model $MODEL
52
53
```

54
Here `$MODEL` is one of `resnet18`, `resnet34`, `resnet50`, `resnet101` or `resnet152`.
55

56
### ResNext
57
```
58
torchrun --nproc_per_node=8 train.py\
59
    --model $MODEL --epochs 100
60
61
```

62
Here `$MODEL` is one of `resnext50_32x4d` or `resnext101_32x8d`.
63
64
65
66
67
68
Note that the above command corresponds to a single node with 8 GPUs. If you use
a different number of GPUs and/or a different batch size, then the learning rate
should be scaled accordingly. For example, the pretrained model provided by
`torchvision` was trained on 8 nodes, each with 8 GPUs (for a total of 64 GPUs),
with `--batch_size 16` and `--lr 0.4`, instead of the current defaults
which are respectively batch_size=32 and lr=0.1
69
70
71

### MobileNetV2
```
72
torchrun --nproc_per_node=8 train.py\
73
74
75
     --model mobilenet_v2 --epochs 300 --lr 0.045 --wd 0.00004\
     --lr-step-size 1 --lr-gamma 0.98
```
76

77

78
### MobileNetV3 Large & Small
79
```
80
torchrun --nproc_per_node=8 train.py\
81
     --model $MODEL --epochs 600 --opt rmsprop --batch-size 128 --lr 0.064\ 
82
83
84
     --wd 0.00001 --lr-step-size 2 --lr-gamma 0.973 --auto-augment imagenet --random-erase 0.2
```

85
86
87
88
89
Here `$MODEL` is one of `mobilenet_v3_large` or `mobilenet_v3_small`.

Then we averaged the parameters of the last 3 checkpoints that improved the Acc@1. See [#3182](https://github.com/pytorch/vision/pull/3182) 
and [#3354](https://github.com/pytorch/vision/pull/3354) for details.

90

91
92
93
94
95
96
### EfficientNet

The weights of the B0-B4 variants are ported from Ross Wightman's [timm repo](https://github.com/rwightman/pytorch-image-models/blob/01cb46a9a50e3ba4be167965b5764e9702f09b30/timm/models/efficientnet.py#L95-L108).

The weights of the B5-B7 variants are ported from Luke Melas' [EfficientNet-PyTorch repo](https://github.com/lukemelas/EfficientNet-PyTorch/blob/1039e009545d9329ea026c9f7541341439712b96/efficientnet_pytorch/utils.py#L562-L564).

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
All models were trained using Bicubic interpolation and each have custom crop and resize sizes. To validate the models use the following commands:
```
torchrun --nproc_per_node=8 train.py --model efficientnet_b0 --interpolation bicubic\
     --val-resize-size 256 --val-crop-size 224 --train-crop-size 224 --test-only --pretrained
torchrun --nproc_per_node=8 train.py --model efficientnet_b1 --interpolation bicubic\
      --val-resize-size 256 --val-crop-size 240 --train-crop-size 240 --test-only --pretrained
torchrun --nproc_per_node=8 train.py --model efficientnet_b2 --interpolation bicubic\
      --val-resize-size 288 --val-crop-size 288 --train-crop-size 288 --test-only --pretrained
torchrun --nproc_per_node=8 train.py --model efficientnet_b3 --interpolation bicubic\
      --val-resize-size 320 --val-crop-size 300 --train-crop-size 300 --test-only --pretrained
torchrun --nproc_per_node=8 train.py --model efficientnet_b4 --interpolation bicubic\
      --val-resize-size 384 --val-crop-size 380 --train-crop-size 380 --test-only --pretrained
torchrun --nproc_per_node=8 train.py --model efficientnet_b5 --interpolation bicubic\
      --val-resize-size 456 --val-crop-size 456 --train-crop-size 456 --test-only --pretrained
torchrun --nproc_per_node=8 train.py --model efficientnet_b6 --interpolation bicubic\
      --val-resize-size 528 --val-crop-size 528 --train-crop-size 528 --test-only --pretrained
torchrun --nproc_per_node=8 train.py --model efficientnet_b7 --interpolation bicubic\
      --val-resize-size 600 --val-crop-size 600 --train-crop-size 600 --test-only --pretrained
```
116
117
118
119
120
121
122
123
124
125
126
127

### RegNet

#### Small models
```
torchrun --nproc_per_node=8 train.py\
     --model $MODEL --epochs 100 --batch-size 128 --wd 0.00005 --lr=0.8\
     --lr-scheduler=cosineannealinglr --lr-warmup-method=linear\
     --lr-warmup-epochs=5 --lr-warmup-decay=0.1
```
Here `$MODEL` is one of `regnet_x_400mf`, `regnet_x_800mf`, `regnet_x_1_6gf`, `regnet_y_400mf`, `regnet_y_800mf` and `regnet_y_1_6gf`. Please note we used learning rate 0.4 for `regent_y_400mf` to get the same Acc@1 as [the paper)(https://arxiv.org/abs/2003.13678).

128
#### Medium models
129
130
131
132
133
134
135
136
```
torchrun --nproc_per_node=8 train.py\
     --model $MODEL --epochs 100 --batch-size 64 --wd 0.00005 --lr=0.4\
     --lr-scheduler=cosineannealinglr --lr-warmup-method=linear\
     --lr-warmup-epochs=5 --lr-warmup-decay=0.1
```
Here `$MODEL` is one of `regnet_x_3_2gf`, `regnet_x_8gf`, `regnet_x_16gf`, `regnet_y_3_2gf` and `regnet_y_8gf`.

137
#### Large models
138
139
140
141
142
143
144
145
```
torchrun --nproc_per_node=8 train.py\
     --model $MODEL --epochs 100 --batch-size 32 --wd 0.00005 --lr=0.2\
     --lr-scheduler=cosineannealinglr --lr-warmup-method=linear\
     --lr-warmup-epochs=5 --lr-warmup-decay=0.1
```
Here `$MODEL` is one of `regnet_x_32gf`, `regnet_y_16gf` and `regnet_y_32gf`.

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
### Vision Transformer

#### vit_b_16
```
torchrun --nproc_per_node=8 train.py\
    --model vit_b_16 --epochs 300 --batch-size 512 --opt adamw --lr 0.003 --wd 0.3\
    --lr-scheduler cosineannealinglr --lr-warmup-method linear --lr-warmup-epochs 30\
    --lr-warmup-decay 0.033 --amp --label-smoothing 0.11 --mixup-alpha 0.2 --auto-augment ra\
    --clip-grad-norm 1 --ra-sampler --cutmix-alpha 1.0 --model-ema
```

Note that the above command corresponds to training on a single node with 8 GPUs.
For generatring the pre-trained weights, we trained with 8 nodes, each with 8 GPUs (for a total of 64 GPUs),
and `--batch_size 64`.

#### vit_b_32
```
torchrun --nproc_per_node=8 train.py\
    --model vit_b_32 --epochs 300 --batch-size 512 --opt adamw --lr 0.003 --wd 0.3\
    --lr-scheduler cosineannealinglr --lr-warmup-method linear --lr-warmup-epochs 30\
    --lr-warmup-decay 0.033 --amp --label-smoothing 0.11 --mixup-alpha 0.2 --auto-augment imagenet\
    --clip-grad-norm 1 --ra-sampler --cutmix-alpha 1.0 --model-ema
```

Note that the above command corresponds to training on a single node with 8 GPUs.
For generatring the pre-trained weights, we trained with 2 nodes, each with 8 GPUs (for a total of 16 GPUs),
and `--batch_size 256`.

#### vit_l_16
```
torchrun --nproc_per_node=8 train.py\
    --model vit_l_16 --epochs 600 --batch-size 128 --lr 0.5 --lr-scheduler cosineannealinglr\
    --lr-warmup-method linear --lr-warmup-epochs 5 --label-smoothing 0.1 --mixup-alpha 0.2\
    --auto-augment ta_wide --random-erase 0.1 --weight-decay 0.00002 --norm-weight-decay 0.0\
    --clip-grad-norm 1 --ra-sampler --cutmix-alpha 1.0 --model-ema --val-resize-size 232
```

Note that the above command corresponds to training on a single node with 8 GPUs.
For generatring the pre-trained weights, we trained with 2 nodes, each with 8 GPUs (for a total of 16 GPUs),
and `--batch_size 64`.

#### vit_l_32
```
torchrun --nproc_per_node=8 train.py\
    --model vit_l_32 --epochs 300 --batch-size 512 --opt adamw --lr 0.003 --wd 0.3\
    --lr-scheduler cosineannealinglr --lr-warmup-method linear --lr-warmup-epochs 30\
    --lr-warmup-decay 0.033 --amp --label-smoothing 0.11 --mixup-alpha 0.2 --auto-augment ra\
    --clip-grad-norm 1 --ra-sampler --cutmix-alpha 1.0 --model-ema
```

Note that the above command corresponds to training on a single node with 8 GPUs.
For generatring the pre-trained weights, we trained with 8 nodes, each with 8 GPUs (for a total of 64 GPUs),
and `--batch_size 64`.

200
201
202
203

### ConvNeXt
```
torchrun --nproc_per_node=8 train.py\ 
204
--model $MODEL --batch-size 128 --opt adamw --lr 1e-3 --lr-scheduler cosineannealinglr \ 
205
206
--lr-warmup-epochs 5 --lr-warmup-method linear --auto-augment ta_wide --epochs 600 --random-erase 0.1 \ 
--label-smoothing 0.1 --mixup-alpha 0.2 --cutmix-alpha 1.0 --weight-decay 0.05 --norm-weight-decay 0.0 \
207
--train-crop-size 176 --model-ema --val-resize-size 232 --ra-sampler --ra-reps 4
208
```
209
Here `$MODEL` is one of `convnext_tiny`, `convnext_small`, `convnext_base` and `convnext_large`. Note that each variant had its `--val-resize-size` optimized in a post-training step, see their `Weights` entry for their exact value.
210
211
212
213
214

Note that the above command corresponds to training on a single node with 8 GPUs.
For generatring the pre-trained weights, we trained with 2 nodes, each with 8 GPUs (for a total of 16 GPUs),
and `--batch_size 64`.

215
## Mixed precision training
216
Automatic Mixed Precision (AMP) training on GPU for Pytorch can be enabled with the [torch.cuda.amp](https://pytorch.org/docs/stable/amp.html?highlight=amp#module-torch.cuda.amp).
217

218
Mixed precision training makes use of both FP32 and FP16 precisions where appropriate. FP16 operations can leverage the Tensor cores on NVIDIA GPUs (Volta, Turing or newer architectures) for improved throughput, generally without loss in model accuracy. Mixed precision training also often allows larger batch sizes. GPU automatic mixed precision training for Pytorch Vision can be enabled via the flag value `--amp=True`.
219
220

```
221
torchrun --nproc_per_node=8 train.py\
222
    --model resnext50_32x4d --epochs 100 --amp
223
224
```

225
226
## Quantized

227
### Post training quantized models
228

229
For all post training quantized models, the settings are:
230
231
232
233
234
235
236

1. num_calibration_batches: 32
2. num_workers: 16
3. batch_size: 32
4. eval_batch_size: 128
5. backend: 'fbgemm'

237
```
238
python train_quantization.py --device='cpu' --post-training-quantize --backend='fbgemm' --model='$MODEL'
239
```
240
Here `$MODEL` is one of `googlenet`, `inception_v3`, `resnet18`, `resnet50`, `resnext101_32x8d`, `shufflenet_v2_x0_5` and `shufflenet_v2_x1_0`.
241
242

### QAT MobileNetV2
243

244
245
246
247
248
249
250
251
252
253
254
255
For Mobilenet-v2, the model was trained with quantization aware training, the settings used are:
1. num_workers: 16
2. batch_size: 32
3. eval_batch_size: 128
4. backend: 'qnnpack'
5. learning-rate: 0.0001
6. num_epochs: 90
7. num_observer_update_epochs:4
8. num_batch_norm_update_epochs:3
9. momentum: 0.9
10. lr_step_size:30
11. lr_gamma: 0.1
256
257
258
12. weight-decay: 0.0001

```
259
torchrun --nproc_per_node=8 train_quantization.py --model='mobilenet_v2'
260
```
261
262
263

Training converges at about 10 epochs.

264
265
### QAT MobileNetV3

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
For Mobilenet-v3 Large, the model was trained with quantization aware training, the settings used are:
1. num_workers: 16
2. batch_size: 32
3. eval_batch_size: 128
4. backend: 'qnnpack'
5. learning-rate: 0.001
6. num_epochs: 90
7. num_observer_update_epochs:4
8. num_batch_norm_update_epochs:3
9. momentum: 0.9
10. lr_step_size:30
11. lr_gamma: 0.1
12. weight-decay: 0.00001

```
281
torchrun --nproc_per_node=8 train_quantization.py --model='mobilenet_v3_large' \
282
283
284
285
    --wd 0.00001 --lr 0.001
```

For post training quant, device is set to CPU. For training, the device is set to CUDA.
286
287

### Command to evaluate quantized models using the pre-trained weights:
288

289
```
290
python train_quantization.py --device='cpu' --test-only --backend='<backend>' --model='<model_name>'
291
```
292
293
294
295
296

For inception_v3 you need to pass the following extra parameters:
```
--val-resize-size 342 --val-crop-size 299 --train-crop-size 299
```