train.py 11.1 KB
Newer Older
1
2
3
4
import datetime
import os
import time

5
import presets
6
7
8
9
import torch
import torch.utils.data
import torchvision
import utils
10
11
from coco_utils import get_coco
from torch import nn
12
13


14
15
16
17
18
19
try:
    from torchvision.prototype import models as PM
except ImportError:
    PM = None


20
def get_dataset(dir_path, name, image_set, transform):
21
    def sbd(*args, **kwargs):
22
23
        return torchvision.datasets.SBDataset(*args, mode="segmentation", **kwargs)

24
    paths = {
25
26
        "voc": (dir_path, torchvision.datasets.VOCSegmentation, 21),
        "voc_aug": (dir_path, sbd, 21),
27
        "coco": (dir_path, get_coco, 21),
28
29
30
31
32
33
34
    }
    p, ds_fn, num_classes = paths[name]

    ds = ds_fn(p, image_set=image_set, transforms=transform)
    return ds, num_classes


35
36
37
38
39
40
def get_transform(train, args):
    if train:
        return presets.SegmentationPresetTrain(base_size=520, crop_size=480)
    elif not args.weights:
        return presets.SegmentationPresetEval(base_size=520)
    else:
41
        weights = PM.get_weight(args.weights)
42
        return weights.transforms()
43
44
45
46
47
48
49
50


def criterion(inputs, target):
    losses = {}
    for name, x in inputs.items():
        losses[name] = nn.functional.cross_entropy(x, target, ignore_index=255)

    if len(losses) == 1:
51
        return losses["out"]
52

53
    return losses["out"] + 0.5 * losses["aux"]
54
55
56
57
58
59


def evaluate(model, data_loader, device, num_classes):
    model.eval()
    confmat = utils.ConfusionMatrix(num_classes)
    metric_logger = utils.MetricLogger(delimiter="  ")
60
    header = "Test:"
61
    with torch.inference_mode():
62
63
64
        for image, target in metric_logger.log_every(data_loader, 100, header):
            image, target = image.to(device), target.to(device)
            output = model(image)
65
            output = output["out"]
66
67
68
69
70
71
72
73

            confmat.update(target.flatten(), output.argmax(1).flatten())

        confmat.reduce_from_all_processes()

    return confmat


74
def train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, device, epoch, print_freq, scaler=None):
75
76
    model.train()
    metric_logger = utils.MetricLogger(delimiter="  ")
77
    metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value}"))
78
    header = f"Epoch: [{epoch}]"
79
80
    for image, target in metric_logger.log_every(data_loader, print_freq, header):
        image, target = image.to(device), target.to(device)
81
82
83
        with torch.cuda.amp.autocast(enabled=scaler is not None):
            output = model(image)
            loss = criterion(output, target)
84
85

        optimizer.zero_grad()
86
87
88
89
90
91
92
        if scaler is not None:
            scaler.scale(loss).backward()
            scaler.step(optimizer)
            scaler.update()
        else:
            loss.backward()
            optimizer.step()
93
94
95
96
97
98
99

        lr_scheduler.step()

        metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])


def main(args):
100
101
    if args.weights and PM is None:
        raise ImportError("The prototype module couldn't be found. Please install the latest torchvision nightly.")
102
103
104
105
106
107
108
109
    if args.output_dir:
        utils.mkdir(args.output_dir)

    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

110
111
    dataset, num_classes = get_dataset(args.data_path, args.dataset, "train", get_transform(True, args))
    dataset_test, _ = get_dataset(args.data_path, args.dataset, "val", get_transform(False, args))
112
113
114
115
116
117
118
119
120

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    data_loader = torch.utils.data.DataLoader(
121
122
123
124
125
126
127
        dataset,
        batch_size=args.batch_size,
        sampler=train_sampler,
        num_workers=args.workers,
        collate_fn=utils.collate_fn,
        drop_last=True,
    )
128
129

    data_loader_test = torch.utils.data.DataLoader(
130
131
        dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
    )
132

133
134
135
136
137
138
139
140
141
142
    if not args.weights:
        model = torchvision.models.segmentation.__dict__[args.model](
            pretrained=args.pretrained,
            num_classes=num_classes,
            aux_loss=args.aux_loss,
        )
    else:
        model = PM.segmentation.__dict__[args.model](
            weights=args.weights, num_classes=num_classes, aux_loss=args.aux_loss
        )
143
144
    model.to(device)
    if args.distributed:
Francisco Massa's avatar
Francisco Massa committed
145
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
146
147
148
149
150
151
152
153
154
155
156
157
158

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

    params_to_optimize = [
        {"params": [p for p in model_without_ddp.backbone.parameters() if p.requires_grad]},
        {"params": [p for p in model_without_ddp.classifier.parameters() if p.requires_grad]},
    ]
    if args.aux_loss:
        params = [p for p in model_without_ddp.aux_classifier.parameters() if p.requires_grad]
        params_to_optimize.append({"params": params, "lr": args.lr * 10})
159
    optimizer = torch.optim.SGD(params_to_optimize, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
160

161
162
    scaler = torch.cuda.amp.GradScaler() if args.amp else None

163
164
    iters_per_epoch = len(data_loader)
    main_lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
165
166
        optimizer, lambda x: (1 - x / (iters_per_epoch * (args.epochs - args.lr_warmup_epochs))) ** 0.9
    )
167
168
169
170

    if args.lr_warmup_epochs > 0:
        warmup_iters = iters_per_epoch * args.lr_warmup_epochs
        args.lr_warmup_method = args.lr_warmup_method.lower()
171
172
173
174
175
176
177
178
        if args.lr_warmup_method == "linear":
            warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
                optimizer, start_factor=args.lr_warmup_decay, total_iters=warmup_iters
            )
        elif args.lr_warmup_method == "constant":
            warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(
                optimizer, factor=args.lr_warmup_decay, total_iters=warmup_iters
            )
179
        else:
180
            raise RuntimeError(
181
                f"Invalid warmup lr method '{args.lr_warmup_method}'. Only linear and constant are supported."
182
            )
183
        lr_scheduler = torch.optim.lr_scheduler.SequentialLR(
184
            optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[warmup_iters]
185
186
187
        )
    else:
        lr_scheduler = main_lr_scheduler
188

189
    if args.resume:
190
191
        checkpoint = torch.load(args.resume, map_location="cpu")
        model_without_ddp.load_state_dict(checkpoint["model"], strict=not args.test_only)
192
        if not args.test_only:
193
194
195
            optimizer.load_state_dict(checkpoint["optimizer"])
            lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
            args.start_epoch = checkpoint["epoch"] + 1
196
197
            if args.amp:
                scaler.load_state_dict(checkpoint["scaler"])
198
199
200
201
202

    if args.test_only:
        confmat = evaluate(model, data_loader_test, device=device, num_classes=num_classes)
        print(confmat)
        return
203

204
    start_time = time.time()
205
    for epoch in range(args.start_epoch, args.epochs):
206
207
        if args.distributed:
            train_sampler.set_epoch(epoch)
208
        train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, device, epoch, args.print_freq, scaler)
209
210
        confmat = evaluate(model, data_loader_test, device=device, num_classes=num_classes)
        print(confmat)
211
        checkpoint = {
212
213
214
215
216
            "model": model_without_ddp.state_dict(),
            "optimizer": optimizer.state_dict(),
            "lr_scheduler": lr_scheduler.state_dict(),
            "epoch": epoch,
            "args": args,
217
        }
218
219
        if args.amp:
            checkpoint["scaler"] = scaler.state_dict()
220
        utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
221
        utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
222
223
224

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
225
    print(f"Training time {total_time_str}")
226
227


228
def get_args_parser(add_help=True):
229
    import argparse
230
231
232

    parser = argparse.ArgumentParser(description="PyTorch Segmentation Training", add_help=add_help)

233
234
235
    parser.add_argument("--data-path", default="/datasets01/COCO/022719/", type=str, help="dataset path")
    parser.add_argument("--dataset", default="coco", type=str, help="dataset name")
    parser.add_argument("--model", default="fcn_resnet101", type=str, help="model name")
236
    parser.add_argument("--aux-loss", action="store_true", help="auxiliar loss")
237
238
239
240
    parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
    parser.add_argument(
        "-b", "--batch-size", default=8, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
    )
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    parser.add_argument("--epochs", default=30, type=int, metavar="N", help="number of total epochs to run")

    parser.add_argument(
        "-j", "--workers", default=16, type=int, metavar="N", help="number of data loading workers (default: 16)"
    )
    parser.add_argument("--lr", default=0.01, type=float, help="initial learning rate")
    parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
    parser.add_argument(
        "--wd",
        "--weight-decay",
        default=1e-4,
        type=float,
        metavar="W",
        help="weight decay (default: 1e-4)",
        dest="weight_decay",
    )
    parser.add_argument("--lr-warmup-epochs", default=0, type=int, help="the number of epochs to warmup (default: 0)")
    parser.add_argument("--lr-warmup-method", default="linear", type=str, help="the warmup method (default: linear)")
    parser.add_argument("--lr-warmup-decay", default=0.01, type=float, help="the decay for lr")
    parser.add_argument("--print-freq", default=10, type=int, help="print frequency")
261
262
    parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
    parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
263
    parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch")
264
265
266
267
268
269
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )
270
271
272
273
274
275
    parser.add_argument(
        "--pretrained",
        dest="pretrained",
        help="Use pre-trained models from the modelzoo",
        action="store_true",
    )
276
    # distributed training parameters
277
    parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
278
    parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
279

280
281
282
    # Prototype models only
    parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")

283
284
285
    # Mixed precision training parameters
    parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training")

286
    return parser
287
288
289


if __name__ == "__main__":
290
    args = get_args_parser().parse_args()
291
    main(args)