regnet.py 39.9 KB
Newer Older
1
2
3
4
import math
from collections import OrderedDict
from functools import partial
from typing import Any, Callable, List, Optional, Tuple
5
6

import torch
7
8
from torch import nn, Tensor

9
from ..ops.misc import Conv2dNormActivation, SqueezeExcitation
10
from ..transforms._presets import ImageClassification, InterpolationMode
11
from ..utils import _log_api_usage_once
12
13
14
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
from ._utils import handle_legacy_interface, _ovewrite_named_param, _make_divisible
15
16


17
18
__all__ = [
    "RegNet",
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
    "RegNet_Y_400MF_Weights",
    "RegNet_Y_800MF_Weights",
    "RegNet_Y_1_6GF_Weights",
    "RegNet_Y_3_2GF_Weights",
    "RegNet_Y_8GF_Weights",
    "RegNet_Y_16GF_Weights",
    "RegNet_Y_32GF_Weights",
    "RegNet_Y_128GF_Weights",
    "RegNet_X_400MF_Weights",
    "RegNet_X_800MF_Weights",
    "RegNet_X_1_6GF_Weights",
    "RegNet_X_3_2GF_Weights",
    "RegNet_X_8GF_Weights",
    "RegNet_X_16GF_Weights",
    "RegNet_X_32GF_Weights",
34
35
36
37
38
39
40
    "regnet_y_400mf",
    "regnet_y_800mf",
    "regnet_y_1_6gf",
    "regnet_y_3_2gf",
    "regnet_y_8gf",
    "regnet_y_16gf",
    "regnet_y_32gf",
41
    "regnet_y_128gf",
42
43
44
45
46
47
48
49
    "regnet_x_400mf",
    "regnet_x_800mf",
    "regnet_x_1_6gf",
    "regnet_x_3_2gf",
    "regnet_x_8gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
]
50
51


52
class SimpleStemIN(Conv2dNormActivation):
53
54
55
56
57
58
59
60
61
    """Simple stem for ImageNet: 3x3, BN, ReLU."""

    def __init__(
        self,
        width_in: int,
        width_out: int,
        norm_layer: Callable[..., nn.Module],
        activation_layer: Callable[..., nn.Module],
    ) -> None:
62
63
64
        super().__init__(
            width_in, width_out, kernel_size=3, stride=2, norm_layer=norm_layer, activation_layer=activation_layer
        )
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84


class BottleneckTransform(nn.Sequential):
    """Bottleneck transformation: 1x1, 3x3 [+SE], 1x1."""

    def __init__(
        self,
        width_in: int,
        width_out: int,
        stride: int,
        norm_layer: Callable[..., nn.Module],
        activation_layer: Callable[..., nn.Module],
        group_width: int,
        bottleneck_multiplier: float,
        se_ratio: Optional[float],
    ) -> None:
        layers: OrderedDict[str, nn.Module] = OrderedDict()
        w_b = int(round(width_out * bottleneck_multiplier))
        g = w_b // group_width

85
        layers["a"] = Conv2dNormActivation(
86
87
            width_in, w_b, kernel_size=1, stride=1, norm_layer=norm_layer, activation_layer=activation_layer
        )
88
        layers["b"] = Conv2dNormActivation(
89
90
            w_b, w_b, kernel_size=3, stride=stride, groups=g, norm_layer=norm_layer, activation_layer=activation_layer
        )
91
92
93
94
95
96
97
98
99
100
101

        if se_ratio:
            # The SE reduction ratio is defined with respect to the
            # beginning of the block
            width_se_out = int(round(se_ratio * width_in))
            layers["se"] = SqueezeExcitation(
                input_channels=w_b,
                squeeze_channels=width_se_out,
                activation=activation_layer,
            )

102
        layers["c"] = Conv2dNormActivation(
103
104
            w_b, width_out, kernel_size=1, stride=1, norm_layer=norm_layer, activation_layer=None
        )
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        super().__init__(layers)


class ResBottleneckBlock(nn.Module):
    """Residual bottleneck block: x + F(x), F = bottleneck transform."""

    def __init__(
        self,
        width_in: int,
        width_out: int,
        stride: int,
        norm_layer: Callable[..., nn.Module],
        activation_layer: Callable[..., nn.Module],
        group_width: int = 1,
        bottleneck_multiplier: float = 1.0,
        se_ratio: Optional[float] = None,
    ) -> None:
        super().__init__()

        # Use skip connection with projection if shape changes
        self.proj = None
        should_proj = (width_in != width_out) or (stride != 1)
        if should_proj:
128
            self.proj = Conv2dNormActivation(
129
130
                width_in, width_out, kernel_size=1, stride=stride, norm_layer=norm_layer, activation_layer=None
            )
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        self.f = BottleneckTransform(
            width_in,
            width_out,
            stride,
            norm_layer,
            activation_layer,
            group_width,
            bottleneck_multiplier,
            se_ratio,
        )
        self.activation = activation_layer(inplace=True)

    def forward(self, x: Tensor) -> Tensor:
        if self.proj is not None:
            x = self.proj(x) + self.f(x)
        else:
            x = x + self.f(x)
        return self.activation(x)


class AnyStage(nn.Sequential):
    """AnyNet stage (sequence of blocks w/ the same output shape)."""

    def __init__(
        self,
        width_in: int,
        width_out: int,
        stride: int,
        depth: int,
        block_constructor: Callable[..., nn.Module],
        norm_layer: Callable[..., nn.Module],
        activation_layer: Callable[..., nn.Module],
        group_width: int,
        bottleneck_multiplier: float,
        se_ratio: Optional[float] = None,
        stage_index: int = 0,
    ) -> None:
        super().__init__()

        for i in range(depth):
            block = block_constructor(
                width_in if i == 0 else width_out,
                width_out,
                stride if i == 0 else 1,
                norm_layer,
                activation_layer,
                group_width,
                bottleneck_multiplier,
                se_ratio,
            )

            self.add_module(f"block{stage_index}-{i}", block)


class BlockParams:
    def __init__(
        self,
        depths: List[int],
        widths: List[int],
        group_widths: List[int],
        bottleneck_multipliers: List[float],
        strides: List[int],
        se_ratio: Optional[float] = None,
    ) -> None:
        self.depths = depths
        self.widths = widths
        self.group_widths = group_widths
        self.bottleneck_multipliers = bottleneck_multipliers
        self.strides = strides
        self.se_ratio = se_ratio

    @classmethod
    def from_init_params(
        cls,
        depth: int,
        w_0: int,
        w_a: float,
        w_m: float,
        group_width: int,
        bottleneck_multiplier: float = 1.0,
        se_ratio: Optional[float] = None,
        **kwargs: Any,
    ) -> "BlockParams":
        """
        Programatically compute all the per-block settings,
        given the RegNet parameters.

        The first step is to compute the quantized linear block parameters,
        in log space. Key parameters are:
        - `w_a` is the width progression slope
        - `w_0` is the initial width
        - `w_m` is the width stepping in the log space

        In other terms
        `log(block_width) = log(w_0) + w_m * block_capacity`,
        with `bock_capacity` ramping up following the w_0 and w_a params.
        This block width is finally quantized to multiples of 8.

        The second step is to compute the parameters per stage,
        taking into account the skip connection and the final 1x1 convolutions.
        We use the fact that the output width is constant within a stage.
        """

        QUANT = 8
        STRIDE = 2

        if w_a < 0 or w_0 <= 0 or w_m <= 1 or w_0 % 8 != 0:
            raise ValueError("Invalid RegNet settings")
        # Compute the block widths. Each stage has one unique block width
        widths_cont = torch.arange(depth) * w_a + w_0
        block_capacity = torch.round(torch.log(widths_cont / w_0) / math.log(w_m))
242
        block_widths = (torch.round(torch.divide(w_0 * torch.pow(w_m, block_capacity), QUANT)) * QUANT).int().tolist()
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        num_stages = len(set(block_widths))

        # Convert to per stage parameters
        split_helper = zip(
            block_widths + [0],
            [0] + block_widths,
            block_widths + [0],
            [0] + block_widths,
        )
        splits = [w != wp or r != rp for w, wp, r, rp in split_helper]

        stage_widths = [w for w, t in zip(block_widths, splits[:-1]) if t]
        stage_depths = torch.diff(torch.tensor([d for d, t in enumerate(splits) if t])).int().tolist()

        strides = [STRIDE] * num_stages
        bottleneck_multipliers = [bottleneck_multiplier] * num_stages
        group_widths = [group_width] * num_stages

        # Adjust the compatibility of stage widths and group widths
        stage_widths, group_widths = cls._adjust_widths_groups_compatibilty(
            stage_widths, bottleneck_multipliers, group_widths
        )

        return cls(
            depths=stage_depths,
            widths=stage_widths,
            group_widths=group_widths,
            bottleneck_multipliers=bottleneck_multipliers,
            strides=strides,
            se_ratio=se_ratio,
        )

    def _get_expanded_params(self):
276
        return zip(self.widths, self.strides, self.depths, self.group_widths, self.bottleneck_multipliers)
277
278
279

    @staticmethod
    def _adjust_widths_groups_compatibilty(
280
281
        stage_widths: List[int], bottleneck_ratios: List[float], group_widths: List[int]
    ) -> Tuple[List[int], List[int]]:
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        """
        Adjusts the compatibility of widths and groups,
        depending on the bottleneck ratio.
        """
        # Compute all widths for the current settings
        widths = [int(w * b) for w, b in zip(stage_widths, bottleneck_ratios)]
        group_widths_min = [min(g, w_bot) for g, w_bot in zip(group_widths, widths)]

        # Compute the adjusted widths so that stage and group widths fit
        ws_bot = [_make_divisible(w_bot, g) for w_bot, g in zip(widths, group_widths_min)]
        stage_widths = [int(w_bot / b) for w_bot, b in zip(ws_bot, bottleneck_ratios)]
        return stage_widths, group_widths_min


class RegNet(nn.Module):
    def __init__(
        self,
        block_params: BlockParams,
        num_classes: int = 1000,
        stem_width: int = 32,
        stem_type: Optional[Callable[..., nn.Module]] = None,
        block_type: Optional[Callable[..., nn.Module]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        activation: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
308
        _log_api_usage_once(self)
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

        if stem_type is None:
            stem_type = SimpleStemIN
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if block_type is None:
            block_type = ResBottleneckBlock
        if activation is None:
            activation = nn.ReLU

        # Ad hoc stem
        self.stem = stem_type(
            3,  # width_in
            stem_width,
            norm_layer,
            activation,
        )

        current_width = stem_width

        blocks = []
        for i, (
            width_out,
            stride,
            depth,
            group_width,
            bottleneck_multiplier,
        ) in enumerate(block_params._get_expanded_params()):
            blocks.append(
                (
                    f"block{i+1}",
                    AnyStage(
                        current_width,
                        width_out,
                        stride,
                        depth,
                        block_type,
                        norm_layer,
                        activation,
                        group_width,
                        bottleneck_multiplier,
                        block_params.se_ratio,
                        stage_index=i + 1,
                    ),
                )
            )

            current_width = width_out

        self.trunk_output = nn.Sequential(OrderedDict(blocks))

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(in_features=current_width, out_features=num_classes)

        # Performs ResNet-style weight initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                # Note that there is no bias due to BN
                fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                nn.init.normal_(m.weight, mean=0.0, std=math.sqrt(2.0 / fan_out))
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, mean=0.0, std=0.01)
                nn.init.zeros_(m.bias)

376
377
378
379
380
381
382
383
384
385
    def forward(self, x: Tensor) -> Tensor:
        x = self.stem(x)
        x = self.trunk_output(x)

        x = self.avgpool(x)
        x = x.flatten(start_dim=1)
        x = self.fc(x)

        return x

386

387
388
389
390
391
392
393
394
395
def _regnet(
    block_params: BlockParams,
    weights: Optional[WeightsEnum],
    progress: bool,
    **kwargs: Any,
) -> RegNet:
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

396
397
    norm_layer = kwargs.pop("norm_layer", partial(nn.BatchNorm2d, eps=1e-05, momentum=0.1))
    model = RegNet(block_params, norm_layer=norm_layer, **kwargs)
398
399
400
401

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

402
403
404
    return model


405
406
407
408
409
410
411
412
_COMMON_META = {
    "task": "image_classification",
    "architecture": "RegNet",
    "size": (224, 224),
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
}

413
414
415
416
417
418
419
_COMMON_SWAG_META = {
    **_COMMON_META,
    "size": (384, 384),
    "recipe": "https://github.com/facebookresearch/SWAG",
    "license": "https://github.com/facebookresearch/SWAG/blob/main/LICENSE",
}

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

class RegNet_Y_400MF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_400mf-c65dace8.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 4344144,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models",
            "acc@1": 74.046,
            "acc@5": 91.716,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_y_400mf-e6988f5f.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 4344144,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 75.804,
            "acc@5": 92.742,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_Y_800MF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_800mf-1b27b58c.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 6432512,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models",
            "acc@1": 76.420,
            "acc@5": 93.136,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_y_800mf-58fc7688.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 6432512,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 78.828,
            "acc@5": 94.502,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_Y_1_6GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_1_6gf-b11a554e.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 11202430,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models",
            "acc@1": 77.950,
            "acc@5": 93.966,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_y_1_6gf-0d7bc02a.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 11202430,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 80.876,
            "acc@5": 95.444,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_Y_3_2GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_3_2gf-b5a9779c.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 19436338,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models",
            "acc@1": 78.948,
            "acc@5": 94.576,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_y_3_2gf-9180c971.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 19436338,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 81.982,
            "acc@5": 95.972,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_Y_8GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_8gf-d0d0e4a8.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 39381472,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models",
            "acc@1": 80.032,
            "acc@5": 95.048,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_y_8gf-dc2b1b54.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 39381472,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 82.828,
            "acc@5": 96.330,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_Y_16GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_16gf-9e6ed7dd.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 83590140,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#large-models",
            "acc@1": 80.424,
            "acc@5": 95.240,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_y_16gf-3e4a00f9.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 83590140,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 82.886,
            "acc@5": 96.328,
        },
    )
574
    IMAGENET1K_SWAG_E2E_V1 = Weights(
575
576
577
578
579
580
581
582
583
584
585
        url="https://download.pytorch.org/models/regnet_y_16gf_swag-43afe44d.pth",
        transforms=partial(
            ImageClassification, crop_size=384, resize_size=384, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_SWAG_META,
            "num_params": 83590140,
            "acc@1": 86.012,
            "acc@5": 98.054,
        },
    )
586
587
588
589
590
591
592
593
594
595
596
597
598
    IMAGENET1K_SWAG_LINEAR_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_16gf_lc_swag-f3ec0043.pth",
        transforms=partial(
            ImageClassification, crop_size=224, resize_size=224, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_SWAG_META,
            "recipe": "https://github.com/pytorch/vision/pull/5793",
            "num_params": 83590140,
            "acc@1": 83.976,
            "acc@5": 97.244,
        },
    )
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
    DEFAULT = IMAGENET1K_V2


class RegNet_Y_32GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_32gf-4dee3f7a.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 145046770,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#large-models",
            "acc@1": 80.878,
            "acc@5": 95.340,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_y_32gf-8db6d4b5.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 145046770,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 83.368,
            "acc@5": 96.498,
        },
    )
625
    IMAGENET1K_SWAG_E2E_V1 = Weights(
626
627
628
629
630
631
632
633
634
635
636
        url="https://download.pytorch.org/models/regnet_y_32gf_swag-04fdfa75.pth",
        transforms=partial(
            ImageClassification, crop_size=384, resize_size=384, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_SWAG_META,
            "num_params": 145046770,
            "acc@1": 86.838,
            "acc@5": 98.362,
        },
    )
637
638
639
640
641
642
643
644
645
646
647
648
649
    IMAGENET1K_SWAG_LINEAR_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_32gf_lc_swag-e1583746.pth",
        transforms=partial(
            ImageClassification, crop_size=224, resize_size=224, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_SWAG_META,
            "recipe": "https://github.com/pytorch/vision/pull/5793",
            "num_params": 145046770,
            "acc@1": 84.622,
            "acc@5": 97.480,
        },
    )
650
651
652
653
    DEFAULT = IMAGENET1K_V2


class RegNet_Y_128GF_Weights(WeightsEnum):
654
    IMAGENET1K_SWAG_E2E_V1 = Weights(
655
656
657
658
659
660
661
662
663
664
665
        url="https://download.pytorch.org/models/regnet_y_128gf_swag-c8ce3e52.pth",
        transforms=partial(
            ImageClassification, crop_size=384, resize_size=384, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_SWAG_META,
            "num_params": 644812894,
            "acc@1": 88.228,
            "acc@5": 98.682,
        },
    )
666
667
668
669
670
671
672
673
674
675
676
677
678
679
    IMAGENET1K_SWAG_LINEAR_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_128gf_lc_swag-cbe8ce12.pth",
        transforms=partial(
            ImageClassification, crop_size=224, resize_size=224, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_SWAG_META,
            "recipe": "https://github.com/pytorch/vision/pull/5793",
            "num_params": 644812894,
            "acc@1": 86.068,
            "acc@5": 97.844,
        },
    )
    DEFAULT = IMAGENET1K_SWAG_E2E_V1
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865


class RegNet_X_400MF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_x_400mf-adf1edd5.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 5495976,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models",
            "acc@1": 72.834,
            "acc@5": 90.950,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_x_400mf-62229a5f.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 5495976,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
            "acc@1": 74.864,
            "acc@5": 92.322,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_X_800MF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_x_800mf-ad17e45c.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 7259656,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models",
            "acc@1": 75.212,
            "acc@5": 92.348,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_x_800mf-94a99ebd.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 7259656,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
            "acc@1": 77.522,
            "acc@5": 93.826,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_X_1_6GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_x_1_6gf-e3633e7f.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 9190136,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models",
            "acc@1": 77.040,
            "acc@5": 93.440,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_x_1_6gf-a12f2b72.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 9190136,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
            "acc@1": 79.668,
            "acc@5": 94.922,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_X_3_2GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_x_3_2gf-f342aeae.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 15296552,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models",
            "acc@1": 78.364,
            "acc@5": 93.992,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_x_3_2gf-7071aa85.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 15296552,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 81.196,
            "acc@5": 95.430,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_X_8GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_x_8gf-03ceed89.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 39572648,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models",
            "acc@1": 79.344,
            "acc@5": 94.686,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_x_8gf-2b70d774.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 39572648,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 81.682,
            "acc@5": 95.678,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_X_16GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_x_16gf-2007eb11.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 54278536,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models",
            "acc@1": 80.058,
            "acc@5": 94.944,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_x_16gf-ba3796d7.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 54278536,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 82.716,
            "acc@5": 96.196,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_X_32GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_x_32gf-9d47f8d0.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 107811560,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#large-models",
            "acc@1": 80.622,
            "acc@5": 95.248,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_x_32gf-6eb8fdc6.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 107811560,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 83.014,
            "acc@5": 96.288,
        },
    )
    DEFAULT = IMAGENET1K_V2


@handle_legacy_interface(weights=("pretrained", RegNet_Y_400MF_Weights.IMAGENET1K_V1))
def regnet_y_400mf(*, weights: Optional[RegNet_Y_400MF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
866
867
868
869
870
    """
    Constructs a RegNetY_400MF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
871
        weights (RegNet_Y_400MF_Weights, optional): The pretrained weights for the model
872
873
        progress (bool): If True, displays a progress bar of the download to stderr
    """
874
875
    weights = RegNet_Y_400MF_Weights.verify(weights)

876
    params = BlockParams.from_init_params(depth=16, w_0=48, w_a=27.89, w_m=2.09, group_width=8, se_ratio=0.25, **kwargs)
877
    return _regnet(params, weights, progress, **kwargs)
878
879


880
881
@handle_legacy_interface(weights=("pretrained", RegNet_Y_800MF_Weights.IMAGENET1K_V1))
def regnet_y_800mf(*, weights: Optional[RegNet_Y_800MF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
882
883
884
885
886
    """
    Constructs a RegNetY_800MF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
887
        weights (RegNet_Y_800MF_Weights, optional): The pretrained weights for the model
888
889
        progress (bool): If True, displays a progress bar of the download to stderr
    """
890
891
    weights = RegNet_Y_800MF_Weights.verify(weights)

892
    params = BlockParams.from_init_params(depth=14, w_0=56, w_a=38.84, w_m=2.4, group_width=16, se_ratio=0.25, **kwargs)
893
    return _regnet(params, weights, progress, **kwargs)
894
895


896
897
@handle_legacy_interface(weights=("pretrained", RegNet_Y_1_6GF_Weights.IMAGENET1K_V1))
def regnet_y_1_6gf(*, weights: Optional[RegNet_Y_1_6GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
898
899
900
901
902
    """
    Constructs a RegNetY_1.6GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
903
        weights (RegNet_Y_1_6GF_Weights, optional): The pretrained weights for the model
904
905
        progress (bool): If True, displays a progress bar of the download to stderr
    """
906
907
    weights = RegNet_Y_1_6GF_Weights.verify(weights)

908
909
910
    params = BlockParams.from_init_params(
        depth=27, w_0=48, w_a=20.71, w_m=2.65, group_width=24, se_ratio=0.25, **kwargs
    )
911
    return _regnet(params, weights, progress, **kwargs)
912
913


914
915
@handle_legacy_interface(weights=("pretrained", RegNet_Y_3_2GF_Weights.IMAGENET1K_V1))
def regnet_y_3_2gf(*, weights: Optional[RegNet_Y_3_2GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
916
917
918
919
920
    """
    Constructs a RegNetY_3.2GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
921
        weights (RegNet_Y_3_2GF_Weights, optional): The pretrained weights for the model
922
923
        progress (bool): If True, displays a progress bar of the download to stderr
    """
924
925
    weights = RegNet_Y_3_2GF_Weights.verify(weights)

926
927
928
    params = BlockParams.from_init_params(
        depth=21, w_0=80, w_a=42.63, w_m=2.66, group_width=24, se_ratio=0.25, **kwargs
    )
929
    return _regnet(params, weights, progress, **kwargs)
930
931


932
933
@handle_legacy_interface(weights=("pretrained", RegNet_Y_8GF_Weights.IMAGENET1K_V1))
def regnet_y_8gf(*, weights: Optional[RegNet_Y_8GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
934
935
936
937
938
    """
    Constructs a RegNetY_8GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
939
        weights (RegNet_Y_8GF_Weights, optional): The pretrained weights for the model
940
941
        progress (bool): If True, displays a progress bar of the download to stderr
    """
942
943
    weights = RegNet_Y_8GF_Weights.verify(weights)

944
945
946
    params = BlockParams.from_init_params(
        depth=17, w_0=192, w_a=76.82, w_m=2.19, group_width=56, se_ratio=0.25, **kwargs
    )
947
    return _regnet(params, weights, progress, **kwargs)
948
949


950
951
@handle_legacy_interface(weights=("pretrained", RegNet_Y_16GF_Weights.IMAGENET1K_V1))
def regnet_y_16gf(*, weights: Optional[RegNet_Y_16GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
952
953
954
955
956
    """
    Constructs a RegNetY_16GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
957
        weights (RegNet_Y_16GF_Weights, optional): The pretrained weights for the model
958
959
        progress (bool): If True, displays a progress bar of the download to stderr
    """
960
961
    weights = RegNet_Y_16GF_Weights.verify(weights)

962
963
964
    params = BlockParams.from_init_params(
        depth=18, w_0=200, w_a=106.23, w_m=2.48, group_width=112, se_ratio=0.25, **kwargs
    )
965
    return _regnet(params, weights, progress, **kwargs)
966
967


968
969
@handle_legacy_interface(weights=("pretrained", RegNet_Y_32GF_Weights.IMAGENET1K_V1))
def regnet_y_32gf(*, weights: Optional[RegNet_Y_32GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
970
971
972
973
974
    """
    Constructs a RegNetY_32GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
975
        weights (RegNet_Y_32GF_Weights, optional): The pretrained weights for the model
976
977
        progress (bool): If True, displays a progress bar of the download to stderr
    """
978
979
    weights = RegNet_Y_32GF_Weights.verify(weights)

980
981
982
    params = BlockParams.from_init_params(
        depth=20, w_0=232, w_a=115.89, w_m=2.53, group_width=232, se_ratio=0.25, **kwargs
    )
983
    return _regnet(params, weights, progress, **kwargs)
984
985


986
987
@handle_legacy_interface(weights=("pretrained", None))
def regnet_y_128gf(*, weights: Optional[RegNet_Y_128GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
988
989
990
991
    """
    Constructs a RegNetY_128GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.
    NOTE: Pretrained weights are not available for this model.
992
993
994
995

    Args:
        weights (RegNet_Y_128GF_Weights, optional): The pretrained weights for the model
        progress (bool): If True, displays a progress bar of the download to stderr
996
    """
997
998
    weights = RegNet_Y_128GF_Weights.verify(weights)

999
1000
1001
    params = BlockParams.from_init_params(
        depth=27, w_0=456, w_a=160.83, w_m=2.52, group_width=264, se_ratio=0.25, **kwargs
    )
1002
    return _regnet(params, weights, progress, **kwargs)
1003
1004


1005
1006
@handle_legacy_interface(weights=("pretrained", RegNet_X_400MF_Weights.IMAGENET1K_V1))
def regnet_x_400mf(*, weights: Optional[RegNet_X_400MF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
1007
1008
1009
1010
1011
    """
    Constructs a RegNetX_400MF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
1012
        weights (RegNet_X_400MF_Weights, optional): The pretrained weights for the model
1013
1014
        progress (bool): If True, displays a progress bar of the download to stderr
    """
1015
1016
    weights = RegNet_X_400MF_Weights.verify(weights)

1017
    params = BlockParams.from_init_params(depth=22, w_0=24, w_a=24.48, w_m=2.54, group_width=16, **kwargs)
1018
    return _regnet(params, weights, progress, **kwargs)
1019
1020


1021
1022
@handle_legacy_interface(weights=("pretrained", RegNet_X_800MF_Weights.IMAGENET1K_V1))
def regnet_x_800mf(*, weights: Optional[RegNet_X_800MF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
1023
1024
1025
1026
1027
    """
    Constructs a RegNetX_800MF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
1028
        weights (RegNet_X_800MF_Weights, optional): The pretrained weights for the model
1029
1030
        progress (bool): If True, displays a progress bar of the download to stderr
    """
1031
1032
    weights = RegNet_X_800MF_Weights.verify(weights)

1033
    params = BlockParams.from_init_params(depth=16, w_0=56, w_a=35.73, w_m=2.28, group_width=16, **kwargs)
1034
    return _regnet(params, weights, progress, **kwargs)
1035
1036


1037
1038
@handle_legacy_interface(weights=("pretrained", RegNet_X_1_6GF_Weights.IMAGENET1K_V1))
def regnet_x_1_6gf(*, weights: Optional[RegNet_X_1_6GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
1039
1040
1041
1042
1043
    """
    Constructs a RegNetX_1.6GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
1044
        weights (RegNet_X_1_6GF_Weights, optional): The pretrained weights for the model
1045
1046
        progress (bool): If True, displays a progress bar of the download to stderr
    """
1047
1048
    weights = RegNet_X_1_6GF_Weights.verify(weights)

1049
    params = BlockParams.from_init_params(depth=18, w_0=80, w_a=34.01, w_m=2.25, group_width=24, **kwargs)
1050
    return _regnet(params, weights, progress, **kwargs)
1051
1052


1053
1054
@handle_legacy_interface(weights=("pretrained", RegNet_X_3_2GF_Weights.IMAGENET1K_V1))
def regnet_x_3_2gf(*, weights: Optional[RegNet_X_3_2GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
1055
1056
1057
1058
1059
    """
    Constructs a RegNetX_3.2GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
1060
        weights (RegNet_X_3_2GF_Weights, optional): The pretrained weights for the model
1061
1062
        progress (bool): If True, displays a progress bar of the download to stderr
    """
1063
1064
    weights = RegNet_X_3_2GF_Weights.verify(weights)

1065
    params = BlockParams.from_init_params(depth=25, w_0=88, w_a=26.31, w_m=2.25, group_width=48, **kwargs)
1066
    return _regnet(params, weights, progress, **kwargs)
1067
1068


1069
1070
@handle_legacy_interface(weights=("pretrained", RegNet_X_8GF_Weights.IMAGENET1K_V1))
def regnet_x_8gf(*, weights: Optional[RegNet_X_8GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
1071
1072
1073
1074
1075
    """
    Constructs a RegNetX_8GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
1076
        weights (RegNet_X_8GF_Weights, optional): The pretrained weights for the model
1077
1078
        progress (bool): If True, displays a progress bar of the download to stderr
    """
1079
1080
    weights = RegNet_X_8GF_Weights.verify(weights)

1081
    params = BlockParams.from_init_params(depth=23, w_0=80, w_a=49.56, w_m=2.88, group_width=120, **kwargs)
1082
    return _regnet(params, weights, progress, **kwargs)
1083
1084


1085
1086
@handle_legacy_interface(weights=("pretrained", RegNet_X_16GF_Weights.IMAGENET1K_V1))
def regnet_x_16gf(*, weights: Optional[RegNet_X_16GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
1087
1088
1089
1090
1091
    """
    Constructs a RegNetX_16GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
1092
        weights (RegNet_X_16GF_Weights, optional): The pretrained weights for the model
1093
1094
        progress (bool): If True, displays a progress bar of the download to stderr
    """
1095
1096
    weights = RegNet_X_16GF_Weights.verify(weights)

1097
    params = BlockParams.from_init_params(depth=22, w_0=216, w_a=55.59, w_m=2.1, group_width=128, **kwargs)
1098
    return _regnet(params, weights, progress, **kwargs)
1099
1100


1101
1102
@handle_legacy_interface(weights=("pretrained", RegNet_X_32GF_Weights.IMAGENET1K_V1))
def regnet_x_32gf(*, weights: Optional[RegNet_X_32GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
1103
1104
1105
1106
1107
    """
    Constructs a RegNetX_32GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
1108
        weights (RegNet_X_32GF_Weights, optional): The pretrained weights for the model
1109
1110
        progress (bool): If True, displays a progress bar of the download to stderr
    """
1111
    weights = RegNet_X_32GF_Weights.verify(weights)
1112

1113
1114
    params = BlockParams.from_init_params(depth=23, w_0=320, w_a=69.86, w_m=2.0, group_width=168, **kwargs)
    return _regnet(params, weights, progress, **kwargs)