_utils.py 14 KB
Newer Older
1
2
3
import math

import torch
eellison's avatar
eellison committed
4
from torch import Tensor
5
from typing import List, Tuple
6
7

from torchvision.ops.misc import FrozenBatchNorm2d
8
9
10
11
12
13
14
15


class BalancedPositiveNegativeSampler(object):
    """
    This class samples batches, ensuring that they contain a fixed proportion of positives
    """

    def __init__(self, batch_size_per_image, positive_fraction):
16
        # type: (int, float) -> None
17
        """
18
        Args:
19
20
21
22
23
24
25
            batch_size_per_image (int): number of elements to be selected per image
            positive_fraction (float): percentace of positive elements per batch
        """
        self.batch_size_per_image = batch_size_per_image
        self.positive_fraction = positive_fraction

    def __call__(self, matched_idxs):
26
        # type: (List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
27
        """
28
        Args:
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
            matched idxs: list of tensors containing -1, 0 or positive values.
                Each tensor corresponds to a specific image.
                -1 values are ignored, 0 are considered as negatives and > 0 as
                positives.

        Returns:
            pos_idx (list[tensor])
            neg_idx (list[tensor])

        Returns two lists of binary masks for each image.
        The first list contains the positive elements that were selected,
        and the second list the negative example.
        """
        pos_idx = []
        neg_idx = []
        for matched_idxs_per_image in matched_idxs:
45
46
            positive = torch.where(matched_idxs_per_image >= 1)[0]
            negative = torch.where(matched_idxs_per_image == 0)[0]
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

            num_pos = int(self.batch_size_per_image * self.positive_fraction)
            # protect against not enough positive examples
            num_pos = min(positive.numel(), num_pos)
            num_neg = self.batch_size_per_image - num_pos
            # protect against not enough negative examples
            num_neg = min(negative.numel(), num_neg)

            # randomly select positive and negative examples
            perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
            perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]

            pos_idx_per_image = positive[perm1]
            neg_idx_per_image = negative[perm2]

            # create binary mask from indices
63
            pos_idx_per_image_mask = torch.zeros_like(
64
65
                matched_idxs_per_image, dtype=torch.uint8
            )
66
            neg_idx_per_image_mask = torch.zeros_like(
67
68
                matched_idxs_per_image, dtype=torch.uint8
            )
eellison's avatar
eellison committed
69

70
71
            pos_idx_per_image_mask[pos_idx_per_image] = 1
            neg_idx_per_image_mask[neg_idx_per_image] = 1
72
73
74
75
76
77
78

            pos_idx.append(pos_idx_per_image_mask)
            neg_idx.append(neg_idx_per_image_mask)

        return pos_idx, neg_idx


79
@torch.jit._script_if_tracing
80
81
82
83
84
85
def encode_boxes(reference_boxes, proposals, weights):
    # type: (torch.Tensor, torch.Tensor, torch.Tensor) -> torch.Tensor
    """
    Encode a set of proposals with respect to some
    reference boxes

86
    Args:
87
88
        reference_boxes (Tensor): reference boxes
        proposals (Tensor): boxes to be encoded
89
        weights (Tensor[4]): the weights for ``(x, y, w, h)``
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    """

    # perform some unpacking to make it JIT-fusion friendly
    wx = weights[0]
    wy = weights[1]
    ww = weights[2]
    wh = weights[3]

    proposals_x1 = proposals[:, 0].unsqueeze(1)
    proposals_y1 = proposals[:, 1].unsqueeze(1)
    proposals_x2 = proposals[:, 2].unsqueeze(1)
    proposals_y2 = proposals[:, 3].unsqueeze(1)

    reference_boxes_x1 = reference_boxes[:, 0].unsqueeze(1)
    reference_boxes_y1 = reference_boxes[:, 1].unsqueeze(1)
    reference_boxes_x2 = reference_boxes[:, 2].unsqueeze(1)
    reference_boxes_y2 = reference_boxes[:, 3].unsqueeze(1)

    # implementation starts here
    ex_widths = proposals_x2 - proposals_x1
    ex_heights = proposals_y2 - proposals_y1
    ex_ctr_x = proposals_x1 + 0.5 * ex_widths
    ex_ctr_y = proposals_y1 + 0.5 * ex_heights

    gt_widths = reference_boxes_x2 - reference_boxes_x1
    gt_heights = reference_boxes_y2 - reference_boxes_y1
    gt_ctr_x = reference_boxes_x1 + 0.5 * gt_widths
    gt_ctr_y = reference_boxes_y1 + 0.5 * gt_heights

    targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths
    targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights
    targets_dw = ww * torch.log(gt_widths / ex_widths)
    targets_dh = wh * torch.log(gt_heights / ex_heights)

    targets = torch.cat((targets_dx, targets_dy, targets_dw, targets_dh), dim=1)
    return targets


class BoxCoder(object):
    """
    This class encodes and decodes a set of bounding boxes into
    the representation used for training the regressors.
    """

    def __init__(self, weights, bbox_xform_clip=math.log(1000. / 16)):
135
        # type: (Tuple[float, float, float, float], float) -> None
136
        """
137
        Args:
138
139
140
141
142
143
144
            weights (4-element tuple)
            bbox_xform_clip (float)
        """
        self.weights = weights
        self.bbox_xform_clip = bbox_xform_clip

    def encode(self, reference_boxes, proposals):
145
        # type: (List[Tensor], List[Tensor]) -> List[Tensor]
146
147
148
149
150
151
152
153
154
155
156
        boxes_per_image = [len(b) for b in reference_boxes]
        reference_boxes = torch.cat(reference_boxes, dim=0)
        proposals = torch.cat(proposals, dim=0)
        targets = self.encode_single(reference_boxes, proposals)
        return targets.split(boxes_per_image, 0)

    def encode_single(self, reference_boxes, proposals):
        """
        Encode a set of proposals with respect to some
        reference boxes

157
        Args:
158
159
160
161
162
163
164
165
166
167
168
            reference_boxes (Tensor): reference boxes
            proposals (Tensor): boxes to be encoded
        """
        dtype = reference_boxes.dtype
        device = reference_boxes.device
        weights = torch.as_tensor(self.weights, dtype=dtype, device=device)
        targets = encode_boxes(reference_boxes, proposals, weights)

        return targets

    def decode(self, rel_codes, boxes):
169
        # type: (Tensor, List[Tensor]) -> Tensor
170
171
        assert isinstance(boxes, (list, tuple))
        assert isinstance(rel_codes, torch.Tensor)
172
        boxes_per_image = [b.size(0) for b in boxes]
173
        concat_boxes = torch.cat(boxes, dim=0)
eellison's avatar
eellison committed
174
175
176
        box_sum = 0
        for val in boxes_per_image:
            box_sum += val
177
178
        if box_sum > 0:
            rel_codes = rel_codes.reshape(box_sum, -1)
179
        pred_boxes = self.decode_single(
180
            rel_codes, concat_boxes
181
        )
182
183
184
        if box_sum > 0:
            pred_boxes = pred_boxes.reshape(box_sum, -1, 4)
        return pred_boxes
185
186
187
188
189
190

    def decode_single(self, rel_codes, boxes):
        """
        From a set of original boxes and encoded relative box offsets,
        get the decoded boxes.

191
        Args:
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
            rel_codes (Tensor): encoded boxes
            boxes (Tensor): reference boxes.
        """

        boxes = boxes.to(rel_codes.dtype)

        widths = boxes[:, 2] - boxes[:, 0]
        heights = boxes[:, 3] - boxes[:, 1]
        ctr_x = boxes[:, 0] + 0.5 * widths
        ctr_y = boxes[:, 1] + 0.5 * heights

        wx, wy, ww, wh = self.weights
        dx = rel_codes[:, 0::4] / wx
        dy = rel_codes[:, 1::4] / wy
        dw = rel_codes[:, 2::4] / ww
        dh = rel_codes[:, 3::4] / wh

        # Prevent sending too large values into torch.exp()
        dw = torch.clamp(dw, max=self.bbox_xform_clip)
        dh = torch.clamp(dh, max=self.bbox_xform_clip)

        pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
        pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
        pred_w = torch.exp(dw) * widths[:, None]
        pred_h = torch.exp(dh) * heights[:, None]

Ailing's avatar
Ailing committed
218
219
220
221
        pred_boxes1 = pred_ctr_x - torch.tensor(0.5, dtype=pred_ctr_x.dtype, device=pred_w.device) * pred_w
        pred_boxes2 = pred_ctr_y - torch.tensor(0.5, dtype=pred_ctr_y.dtype, device=pred_h.device) * pred_h
        pred_boxes3 = pred_ctr_x + torch.tensor(0.5, dtype=pred_ctr_x.dtype, device=pred_w.device) * pred_w
        pred_boxes4 = pred_ctr_y + torch.tensor(0.5, dtype=pred_ctr_y.dtype, device=pred_h.device) * pred_h
222
        pred_boxes = torch.stack((pred_boxes1, pred_boxes2, pred_boxes3, pred_boxes4), dim=2).flatten(1)
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        return pred_boxes


class Matcher(object):
    """
    This class assigns to each predicted "element" (e.g., a box) a ground-truth
    element. Each predicted element will have exactly zero or one matches; each
    ground-truth element may be assigned to zero or more predicted elements.

    Matching is based on the MxN match_quality_matrix, that characterizes how well
    each (ground-truth, predicted)-pair match. For example, if the elements are
    boxes, the matrix may contain box IoU overlap values.

    The matcher returns a tensor of size N containing the index of the ground-truth
    element m that matches to prediction n. If there is no match, a negative value
    is returned.
    """

    BELOW_LOW_THRESHOLD = -1
    BETWEEN_THRESHOLDS = -2

eellison's avatar
eellison committed
244
245
246
247
248
    __annotations__ = {
        'BELOW_LOW_THRESHOLD': int,
        'BETWEEN_THRESHOLDS': int,
    }

249
    def __init__(self, high_threshold, low_threshold, allow_low_quality_matches=False):
250
        # type: (float, float, bool) -> None
251
252
253
254
255
256
257
258
259
260
261
262
263
        """
        Args:
            high_threshold (float): quality values greater than or equal to
                this value are candidate matches.
            low_threshold (float): a lower quality threshold used to stratify
                matches into three levels:
                1) matches >= high_threshold
                2) BETWEEN_THRESHOLDS matches in [low_threshold, high_threshold)
                3) BELOW_LOW_THRESHOLD matches in [0, low_threshold)
            allow_low_quality_matches (bool): if True, produce additional matches
                for predictions that have only low-quality match candidates. See
                set_low_quality_matches_ for more details.
        """
eellison's avatar
eellison committed
264
265
        self.BELOW_LOW_THRESHOLD = -1
        self.BETWEEN_THRESHOLDS = -2
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        assert low_threshold <= high_threshold
        self.high_threshold = high_threshold
        self.low_threshold = low_threshold
        self.allow_low_quality_matches = allow_low_quality_matches

    def __call__(self, match_quality_matrix):
        """
        Args:
            match_quality_matrix (Tensor[float]): an MxN tensor, containing the
            pairwise quality between M ground-truth elements and N predicted elements.

        Returns:
            matches (Tensor[int64]): an N tensor where N[i] is a matched gt in
            [0, M - 1] or a negative value indicating that prediction i could not
            be matched.
        """
        if match_quality_matrix.numel() == 0:
            # empty targets or proposals not supported during training
            if match_quality_matrix.shape[0] == 0:
                raise ValueError(
                    "No ground-truth boxes available for one of the images "
                    "during training")
            else:
                raise ValueError(
                    "No proposal boxes available for one of the images "
                    "during training")

        # match_quality_matrix is M (gt) x N (predicted)
        # Max over gt elements (dim 0) to find best gt candidate for each prediction
        matched_vals, matches = match_quality_matrix.max(dim=0)
        if self.allow_low_quality_matches:
            all_matches = matches.clone()
eellison's avatar
eellison committed
298
299
        else:
            all_matches = None
300
301
302
303
304
305

        # Assign candidate matches with low quality to negative (unassigned) values
        below_low_threshold = matched_vals < self.low_threshold
        between_thresholds = (matched_vals >= self.low_threshold) & (
            matched_vals < self.high_threshold
        )
306
307
        matches[below_low_threshold] = self.BELOW_LOW_THRESHOLD
        matches[between_thresholds] = self.BETWEEN_THRESHOLDS
308
309

        if self.allow_low_quality_matches:
eellison's avatar
eellison committed
310
            assert all_matches is not None
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
            self.set_low_quality_matches_(matches, all_matches, match_quality_matrix)

        return matches

    def set_low_quality_matches_(self, matches, all_matches, match_quality_matrix):
        """
        Produce additional matches for predictions that have only low-quality matches.
        Specifically, for each ground-truth find the set of predictions that have
        maximum overlap with it (including ties); for each prediction in that set, if
        it is unmatched, then match it to the ground-truth with which it has the highest
        quality value.
        """
        # For each gt, find the prediction with which it has highest quality
        highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1)
        # Find highest quality match available, even if it is low, including ties
326
        gt_pred_pairs_of_highest_quality = torch.where(
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
            match_quality_matrix == highest_quality_foreach_gt[:, None]
        )
        # Example gt_pred_pairs_of_highest_quality:
        #   tensor([[    0, 39796],
        #           [    1, 32055],
        #           [    1, 32070],
        #           [    2, 39190],
        #           [    2, 40255],
        #           [    3, 40390],
        #           [    3, 41455],
        #           [    4, 45470],
        #           [    5, 45325],
        #           [    5, 46390]])
        # Each row is a (gt index, prediction index)
        # Note how gt items 1, 2, 3, and 5 each have two ties

343
        pred_inds_to_update = gt_pred_pairs_of_highest_quality[1]
344
        matches[pred_inds_to_update] = all_matches[pred_inds_to_update]
345
346


347
348
349
350
351
352
353
354
355
def overwrite_eps(model, eps):
    """
    This method overwrites the default eps values of all the
    FrozenBatchNorm2d layers of the model with the provided value.
    This is necessary to address the BC-breaking change introduced
    by the bug-fix at pytorch/vision#2933. The overwrite is applied
    only when the pretrained weights are loaded to maintain compatibility
    with previous versions.

356
    Args:
357
358
359
360
361
362
        model (nn.Module): The model on which we perform the overwrite.
        eps (float): The new value of eps.
    """
    for module in model.modules():
        if isinstance(module, FrozenBatchNorm2d):
            module.eps = eps