_utils.py 13.9 KB
Newer Older
1
2
3
import math

import torch
eellison's avatar
eellison committed
4
5
from torch.jit.annotations import List, Tuple
from torch import Tensor
6
import torchvision
7
8


eellison's avatar
eellison committed
9
10
11
# TODO: https://github.com/pytorch/pytorch/issues/26727
def zeros_like(tensor, dtype):
    # type: (Tensor, int) -> Tensor
12
13
    return torch.zeros_like(tensor, dtype=dtype, layout=tensor.layout,
                            device=tensor.device, pin_memory=tensor.is_pinned())
eellison's avatar
eellison committed
14
15


16
17
18
19
20
21
class BalancedPositiveNegativeSampler(object):
    """
    This class samples batches, ensuring that they contain a fixed proportion of positives
    """

    def __init__(self, batch_size_per_image, positive_fraction):
22
        # type: (int, float) -> None
23
24
25
26
27
28
29
30
31
        """
        Arguments:
            batch_size_per_image (int): number of elements to be selected per image
            positive_fraction (float): percentace of positive elements per batch
        """
        self.batch_size_per_image = batch_size_per_image
        self.positive_fraction = positive_fraction

    def __call__(self, matched_idxs):
32
        # type: (List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
        """
        Arguments:
            matched idxs: list of tensors containing -1, 0 or positive values.
                Each tensor corresponds to a specific image.
                -1 values are ignored, 0 are considered as negatives and > 0 as
                positives.

        Returns:
            pos_idx (list[tensor])
            neg_idx (list[tensor])

        Returns two lists of binary masks for each image.
        The first list contains the positive elements that were selected,
        and the second list the negative example.
        """
        pos_idx = []
        neg_idx = []
        for matched_idxs_per_image in matched_idxs:
            positive = torch.nonzero(matched_idxs_per_image >= 1).squeeze(1)
            negative = torch.nonzero(matched_idxs_per_image == 0).squeeze(1)

            num_pos = int(self.batch_size_per_image * self.positive_fraction)
            # protect against not enough positive examples
            num_pos = min(positive.numel(), num_pos)
            num_neg = self.batch_size_per_image - num_pos
            # protect against not enough negative examples
            num_neg = min(negative.numel(), num_neg)

            # randomly select positive and negative examples
            perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
            perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]

            pos_idx_per_image = positive[perm1]
            neg_idx_per_image = negative[perm2]

            # create binary mask from indices
eellison's avatar
eellison committed
69
            pos_idx_per_image_mask = zeros_like(
70
71
                matched_idxs_per_image, dtype=torch.uint8
            )
eellison's avatar
eellison committed
72
            neg_idx_per_image_mask = zeros_like(
73
74
                matched_idxs_per_image, dtype=torch.uint8
            )
eellison's avatar
eellison committed
75

76
77
            pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
            neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

            pos_idx.append(pos_idx_per_image_mask)
            neg_idx.append(neg_idx_per_image_mask)

        return pos_idx, neg_idx


@torch.jit.script
def encode_boxes(reference_boxes, proposals, weights):
    # type: (torch.Tensor, torch.Tensor, torch.Tensor) -> torch.Tensor
    """
    Encode a set of proposals with respect to some
    reference boxes

    Arguments:
        reference_boxes (Tensor): reference boxes
        proposals (Tensor): boxes to be encoded
    """

    # perform some unpacking to make it JIT-fusion friendly
    wx = weights[0]
    wy = weights[1]
    ww = weights[2]
    wh = weights[3]

    proposals_x1 = proposals[:, 0].unsqueeze(1)
    proposals_y1 = proposals[:, 1].unsqueeze(1)
    proposals_x2 = proposals[:, 2].unsqueeze(1)
    proposals_y2 = proposals[:, 3].unsqueeze(1)

    reference_boxes_x1 = reference_boxes[:, 0].unsqueeze(1)
    reference_boxes_y1 = reference_boxes[:, 1].unsqueeze(1)
    reference_boxes_x2 = reference_boxes[:, 2].unsqueeze(1)
    reference_boxes_y2 = reference_boxes[:, 3].unsqueeze(1)

    # implementation starts here
    ex_widths = proposals_x2 - proposals_x1
    ex_heights = proposals_y2 - proposals_y1
    ex_ctr_x = proposals_x1 + 0.5 * ex_widths
    ex_ctr_y = proposals_y1 + 0.5 * ex_heights

    gt_widths = reference_boxes_x2 - reference_boxes_x1
    gt_heights = reference_boxes_y2 - reference_boxes_y1
    gt_ctr_x = reference_boxes_x1 + 0.5 * gt_widths
    gt_ctr_y = reference_boxes_y1 + 0.5 * gt_heights

    targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths
    targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights
    targets_dw = ww * torch.log(gt_widths / ex_widths)
    targets_dh = wh * torch.log(gt_heights / ex_heights)

    targets = torch.cat((targets_dx, targets_dy, targets_dw, targets_dh), dim=1)
    return targets


class BoxCoder(object):
    """
    This class encodes and decodes a set of bounding boxes into
    the representation used for training the regressors.
    """

    def __init__(self, weights, bbox_xform_clip=math.log(1000. / 16)):
140
        # type: (Tuple[float, float, float, float], float) -> None
141
142
143
144
145
146
147
148
149
        """
        Arguments:
            weights (4-element tuple)
            bbox_xform_clip (float)
        """
        self.weights = weights
        self.bbox_xform_clip = bbox_xform_clip

    def encode(self, reference_boxes, proposals):
150
        # type: (List[Tensor], List[Tensor]) -> List[Tensor]
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        boxes_per_image = [len(b) for b in reference_boxes]
        reference_boxes = torch.cat(reference_boxes, dim=0)
        proposals = torch.cat(proposals, dim=0)
        targets = self.encode_single(reference_boxes, proposals)
        return targets.split(boxes_per_image, 0)

    def encode_single(self, reference_boxes, proposals):
        """
        Encode a set of proposals with respect to some
        reference boxes

        Arguments:
            reference_boxes (Tensor): reference boxes
            proposals (Tensor): boxes to be encoded
        """
        dtype = reference_boxes.dtype
        device = reference_boxes.device
        weights = torch.as_tensor(self.weights, dtype=dtype, device=device)
        targets = encode_boxes(reference_boxes, proposals, weights)

        return targets

    def decode(self, rel_codes, boxes):
174
        # type: (Tensor, List[Tensor]) -> Tensor
175
176
        assert isinstance(boxes, (list, tuple))
        assert isinstance(rel_codes, torch.Tensor)
177
        boxes_per_image = [b.size(0) for b in boxes]
178
        concat_boxes = torch.cat(boxes, dim=0)
eellison's avatar
eellison committed
179
180
181
        box_sum = 0
        for val in boxes_per_image:
            box_sum += val
182
        pred_boxes = self.decode_single(
eellison's avatar
eellison committed
183
            rel_codes.reshape(box_sum, -1), concat_boxes
184
        )
eellison's avatar
eellison committed
185
        return pred_boxes.reshape(box_sum, -1, 4)
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

    def decode_single(self, rel_codes, boxes):
        """
        From a set of original boxes and encoded relative box offsets,
        get the decoded boxes.

        Arguments:
            rel_codes (Tensor): encoded boxes
            boxes (Tensor): reference boxes.
        """

        boxes = boxes.to(rel_codes.dtype)

        widths = boxes[:, 2] - boxes[:, 0]
        heights = boxes[:, 3] - boxes[:, 1]
        ctr_x = boxes[:, 0] + 0.5 * widths
        ctr_y = boxes[:, 1] + 0.5 * heights

        wx, wy, ww, wh = self.weights
        dx = rel_codes[:, 0::4] / wx
        dy = rel_codes[:, 1::4] / wy
        dw = rel_codes[:, 2::4] / ww
        dh = rel_codes[:, 3::4] / wh

        # Prevent sending too large values into torch.exp()
        dw = torch.clamp(dw, max=self.bbox_xform_clip)
        dh = torch.clamp(dh, max=self.bbox_xform_clip)

        pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
        pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
        pred_w = torch.exp(dw) * widths[:, None]
        pred_h = torch.exp(dh) * heights[:, None]

Ailing's avatar
Ailing committed
219
220
221
222
        pred_boxes1 = pred_ctr_x - torch.tensor(0.5, dtype=pred_ctr_x.dtype, device=pred_w.device) * pred_w
        pred_boxes2 = pred_ctr_y - torch.tensor(0.5, dtype=pred_ctr_y.dtype, device=pred_h.device) * pred_h
        pred_boxes3 = pred_ctr_x + torch.tensor(0.5, dtype=pred_ctr_x.dtype, device=pred_w.device) * pred_w
        pred_boxes4 = pred_ctr_y + torch.tensor(0.5, dtype=pred_ctr_y.dtype, device=pred_h.device) * pred_h
223
        pred_boxes = torch.stack((pred_boxes1, pred_boxes2, pred_boxes3, pred_boxes4), dim=2).flatten(1)
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        return pred_boxes


class Matcher(object):
    """
    This class assigns to each predicted "element" (e.g., a box) a ground-truth
    element. Each predicted element will have exactly zero or one matches; each
    ground-truth element may be assigned to zero or more predicted elements.

    Matching is based on the MxN match_quality_matrix, that characterizes how well
    each (ground-truth, predicted)-pair match. For example, if the elements are
    boxes, the matrix may contain box IoU overlap values.

    The matcher returns a tensor of size N containing the index of the ground-truth
    element m that matches to prediction n. If there is no match, a negative value
    is returned.
    """

    BELOW_LOW_THRESHOLD = -1
    BETWEEN_THRESHOLDS = -2

eellison's avatar
eellison committed
245
246
247
248
249
    __annotations__ = {
        'BELOW_LOW_THRESHOLD': int,
        'BETWEEN_THRESHOLDS': int,
    }

250
    def __init__(self, high_threshold, low_threshold, allow_low_quality_matches=False):
251
        # type: (float, float, bool) -> None
252
253
254
255
256
257
258
259
260
261
262
263
264
        """
        Args:
            high_threshold (float): quality values greater than or equal to
                this value are candidate matches.
            low_threshold (float): a lower quality threshold used to stratify
                matches into three levels:
                1) matches >= high_threshold
                2) BETWEEN_THRESHOLDS matches in [low_threshold, high_threshold)
                3) BELOW_LOW_THRESHOLD matches in [0, low_threshold)
            allow_low_quality_matches (bool): if True, produce additional matches
                for predictions that have only low-quality match candidates. See
                set_low_quality_matches_ for more details.
        """
eellison's avatar
eellison committed
265
266
        self.BELOW_LOW_THRESHOLD = -1
        self.BETWEEN_THRESHOLDS = -2
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        assert low_threshold <= high_threshold
        self.high_threshold = high_threshold
        self.low_threshold = low_threshold
        self.allow_low_quality_matches = allow_low_quality_matches

    def __call__(self, match_quality_matrix):
        """
        Args:
            match_quality_matrix (Tensor[float]): an MxN tensor, containing the
            pairwise quality between M ground-truth elements and N predicted elements.

        Returns:
            matches (Tensor[int64]): an N tensor where N[i] is a matched gt in
            [0, M - 1] or a negative value indicating that prediction i could not
            be matched.
        """
        if match_quality_matrix.numel() == 0:
            # empty targets or proposals not supported during training
            if match_quality_matrix.shape[0] == 0:
                raise ValueError(
                    "No ground-truth boxes available for one of the images "
                    "during training")
            else:
                raise ValueError(
                    "No proposal boxes available for one of the images "
                    "during training")

        # match_quality_matrix is M (gt) x N (predicted)
        # Max over gt elements (dim 0) to find best gt candidate for each prediction
        matched_vals, matches = match_quality_matrix.max(dim=0)
        if self.allow_low_quality_matches:
            all_matches = matches.clone()
eellison's avatar
eellison committed
299
300
        else:
            all_matches = None
301
302
303
304
305
306

        # Assign candidate matches with low quality to negative (unassigned) values
        below_low_threshold = matched_vals < self.low_threshold
        between_thresholds = (matched_vals >= self.low_threshold) & (
            matched_vals < self.high_threshold
        )
eellison's avatar
eellison committed
307
308
        matches[below_low_threshold] = torch.tensor(self.BELOW_LOW_THRESHOLD)
        matches[between_thresholds] = torch.tensor(self.BETWEEN_THRESHOLDS)
309
310

        if self.allow_low_quality_matches:
eellison's avatar
eellison committed
311
            assert all_matches is not None
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
            self.set_low_quality_matches_(matches, all_matches, match_quality_matrix)

        return matches

    def set_low_quality_matches_(self, matches, all_matches, match_quality_matrix):
        """
        Produce additional matches for predictions that have only low-quality matches.
        Specifically, for each ground-truth find the set of predictions that have
        maximum overlap with it (including ties); for each prediction in that set, if
        it is unmatched, then match it to the ground-truth with which it has the highest
        quality value.
        """
        # For each gt, find the prediction with which it has highest quality
        highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1)
        # Find highest quality match available, even if it is low, including ties
        gt_pred_pairs_of_highest_quality = torch.nonzero(
            match_quality_matrix == highest_quality_foreach_gt[:, None]
        )
        # Example gt_pred_pairs_of_highest_quality:
        #   tensor([[    0, 39796],
        #           [    1, 32055],
        #           [    1, 32070],
        #           [    2, 39190],
        #           [    2, 40255],
        #           [    3, 40390],
        #           [    3, 41455],
        #           [    4, 45470],
        #           [    5, 45325],
        #           [    5, 46390]])
        # Each row is a (gt index, prediction index)
        # Note how gt items 1, 2, 3, and 5 each have two ties

        pred_inds_to_update = gt_pred_pairs_of_highest_quality[:, 1]
        matches[pred_inds_to_update] = all_matches[pred_inds_to_update]
346
347
348
349
350
351
352
353
354
355
356
357
358


def smooth_l1_loss(input, target, beta: float = 1. / 9, size_average: bool = True):
    """
    very similar to the smooth_l1_loss from pytorch, but with
    the extra beta parameter
    """
    n = torch.abs(input - target)
    cond = n < beta
    loss = torch.where(cond, 0.5 * n ** 2 / beta, n - 0.5 * beta)
    if size_average:
        return loss.mean()
    return loss.sum()