fakedata.py 1.83 KB
Newer Older
1
2
3
4
import torch
import torch.utils.data as data
from .. import transforms

Soumith Chintala's avatar
Soumith Chintala committed
5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
class FakeData(data.Dataset):
    """A fake dataset that returns randomly generated images and returns them as PIL images

    Args:
        size (int, optional): Size of the dataset. Default: 1000 images
        image_size(tuple, optional): Size if the returned images. Default: (3, 224, 224)
        num_classes(int, optional): Number of classes in the datset. Default: 10
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.

    """

    def __init__(self, size=1000, image_size=(3, 224, 224), num_classes=10, transform=None, target_transform=None):
        self.size = size
        self.num_classes = num_classes
        self.image_size = image_size
        self.transform = transform
        self.target_transform = target_transform

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is class_index of the target class.
        """
        # create random image that is consistent with the index id
        rng_state = torch.get_rng_state()
        torch.manual_seed(index)
        img = torch.randn(*self.image_size)
        target = torch.Tensor(1).random_(0, self.num_classes)[0]
        torch.set_rng_state(rng_state)

        # convert to PIL Image
        img = transforms.ToPILImage()(img)
        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        return self.size