import torch import torch.utils.data as data from .. import transforms class FakeData(data.Dataset): """A fake dataset that returns randomly generated images and returns them as PIL images Args: size (int, optional): Size of the dataset. Default: 1000 images image_size(tuple, optional): Size if the returned images. Default: (3, 224, 224) num_classes(int, optional): Number of classes in the datset. Default: 10 transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ def __init__(self, size=1000, image_size=(3, 224, 224), num_classes=10, transform=None, target_transform=None): self.size = size self.num_classes = num_classes self.image_size = image_size self.transform = transform self.target_transform = target_transform def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is class_index of the target class. """ # create random image that is consistent with the index id rng_state = torch.get_rng_state() torch.manual_seed(index) img = torch.randn(*self.image_size) target = torch.Tensor(1).random_(0, self.num_classes)[0] torch.set_rng_state(rng_state) # convert to PIL Image img = transforms.ToPILImage()(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return self.size