functional_pil.py 11.8 KB
Newer Older
1
import numbers
2
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
3

vfdev's avatar
vfdev committed
4
import numpy as np
5
import torch
6
from PIL import Image, ImageEnhance, ImageOps
7
from typing_extensions import Literal
vfdev's avatar
vfdev committed
8

9
10
11
12
try:
    import accimage
except ImportError:
    accimage = None
13
from . import _pil_constants
14
15
16


@torch.jit.unused
vfdev's avatar
vfdev committed
17
def _is_pil_image(img: Any) -> bool:
18
19
20
21
22
23
    if accimage is not None:
        return isinstance(img, (Image.Image, accimage.Image))
    else:
        return isinstance(img, Image.Image)


24
25
26
@torch.jit.unused
def get_dimensions(img: Any) -> List[int]:
    if _is_pil_image(img):
27
28
29
30
        if hasattr(img, "getbands"):
            channels = len(img.getbands())
        else:
            channels = img.channels
31
32
33
34
35
        width, height = img.size
        return [channels, height, width]
    raise TypeError(f"Unexpected type {type(img)}")


vfdev's avatar
vfdev committed
36
@torch.jit.unused
37
def get_image_size(img: Any) -> List[int]:
vfdev's avatar
vfdev committed
38
    if _is_pil_image(img):
39
        return list(img.size)
40
    raise TypeError(f"Unexpected type {type(img)}")
vfdev's avatar
vfdev committed
41
42


43
@torch.jit.unused
44
def get_image_num_channels(img: Any) -> int:
45
    if _is_pil_image(img):
46
47
48
49
        if hasattr(img, "getbands"):
            return len(img.getbands())
        else:
            return img.channels
50
    raise TypeError(f"Unexpected type {type(img)}")
51
52


53
@torch.jit.unused
54
def hflip(img: Image.Image) -> Image.Image:
55
    if not _is_pil_image(img):
56
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
57

58
    return img.transpose(_pil_constants.FLIP_LEFT_RIGHT)
59
60
61


@torch.jit.unused
62
def vflip(img: Image.Image) -> Image.Image:
63
    if not _is_pil_image(img):
64
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
65

66
    return img.transpose(_pil_constants.FLIP_TOP_BOTTOM)
67
68
69


@torch.jit.unused
70
def adjust_brightness(img: Image.Image, brightness_factor: float) -> Image.Image:
71
    if not _is_pil_image(img):
72
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
73
74
75
76
77
78
79

    enhancer = ImageEnhance.Brightness(img)
    img = enhancer.enhance(brightness_factor)
    return img


@torch.jit.unused
80
def adjust_contrast(img: Image.Image, contrast_factor: float) -> Image.Image:
81
    if not _is_pil_image(img):
82
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
83
84
85
86
87
88
89

    enhancer = ImageEnhance.Contrast(img)
    img = enhancer.enhance(contrast_factor)
    return img


@torch.jit.unused
90
def adjust_saturation(img: Image.Image, saturation_factor: float) -> Image.Image:
91
    if not _is_pil_image(img):
92
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
93
94
95
96
97
98
99

    enhancer = ImageEnhance.Color(img)
    img = enhancer.enhance(saturation_factor)
    return img


@torch.jit.unused
100
def adjust_hue(img: Image.Image, hue_factor: float) -> Image.Image:
101
    if not (-0.5 <= hue_factor <= 0.5):
102
        raise ValueError(f"hue_factor ({hue_factor}) is not in [-0.5, 0.5].")
103
104

    if not _is_pil_image(img):
105
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
106
107

    input_mode = img.mode
108
    if input_mode in {"L", "1", "I", "F"}:
109
110
        return img

111
    h, s, v = img.convert("HSV").split()
112
113
114

    np_h = np.array(h, dtype=np.uint8)
    # uint8 addition take cares of rotation across boundaries
115
    with np.errstate(over="ignore"):
116
        np_h += np.uint8(hue_factor * 255)
117
    h = Image.fromarray(np_h, "L")
118

119
    img = Image.merge("HSV", (h, s, v)).convert(input_mode)
120
    return img
121
122


123
@torch.jit.unused
124
125
126
127
128
129
def adjust_gamma(
    img: Image.Image,
    gamma: float,
    gain: float = 1.0,
) -> Image.Image:

130
    if not _is_pil_image(img):
131
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
132
133

    if gamma < 0:
134
        raise ValueError("Gamma should be a non-negative real number")
135
136

    input_mode = img.mode
137
    img = img.convert("RGB")
138
    gamma_map = [int((255 + 1 - 1e-3) * gain * pow(ele / 255.0, gamma)) for ele in range(256)] * 3
139
140
141
142
143
144
    img = img.point(gamma_map)  # use PIL's point-function to accelerate this part

    img = img.convert(input_mode)
    return img


145
@torch.jit.unused
146
147
148
149
def pad(
    img: Image.Image,
    padding: Union[int, List[int], Tuple[int, ...]],
    fill: Optional[Union[float, List[float], Tuple[float, ...]]] = 0,
150
    padding_mode: Literal["constant", "edge", "reflect", "symmetric"] = "constant",
151
152
) -> Image.Image:

153
    if not _is_pil_image(img):
154
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
155
156
157

    if not isinstance(padding, (numbers.Number, tuple, list)):
        raise TypeError("Got inappropriate padding arg")
158
    if not isinstance(fill, (numbers.Number, tuple, list)):
159
160
161
162
163
164
165
166
        raise TypeError("Got inappropriate fill arg")
    if not isinstance(padding_mode, str):
        raise TypeError("Got inappropriate padding_mode arg")

    if isinstance(padding, list):
        padding = tuple(padding)

    if isinstance(padding, tuple) and len(padding) not in [1, 2, 4]:
167
        raise ValueError(f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple")
168
169
170
171
172
173
174
175
176

    if isinstance(padding, tuple) and len(padding) == 1:
        # Compatibility with `functional_tensor.pad`
        padding = padding[0]

    if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
        raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

    if padding_mode == "constant":
177
        opts = _parse_fill(fill, img, name="fill")
178
179
        if img.mode == "P":
            palette = img.getpalette()
180
            image = ImageOps.expand(img, border=padding, **opts)
181
182
183
            image.putpalette(palette)
            return image

184
        return ImageOps.expand(img, border=padding, **opts)
185
186
187
188
189
190
191
192
193
194
195
196
    else:
        if isinstance(padding, int):
            pad_left = pad_right = pad_top = pad_bottom = padding
        if isinstance(padding, tuple) and len(padding) == 2:
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
        if isinstance(padding, tuple) and len(padding) == 4:
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]

197
198
199
200
201
202
203
204
205
        p = [pad_left, pad_top, pad_right, pad_bottom]
        cropping = -np.minimum(p, 0)

        if cropping.any():
            crop_left, crop_top, crop_right, crop_bottom = cropping
            img = img.crop((crop_left, crop_top, img.width - crop_right, img.height - crop_bottom))

        pad_left, pad_top, pad_right, pad_bottom = np.maximum(p, 0)

206
        if img.mode == "P":
207
208
            palette = img.getpalette()
            img = np.asarray(img)
209
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), mode=padding_mode)
210
211
212
213
214
215
216
217
218
219
220
221
222
            img = Image.fromarray(img)
            img.putpalette(palette)
            return img

        img = np.asarray(img)
        # RGB image
        if len(img.shape) == 3:
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), padding_mode)
        # Grayscale image
        if len(img.shape) == 2:
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode)

        return Image.fromarray(img)
vfdev's avatar
vfdev committed
223
224
225


@torch.jit.unused
226
227
228
229
230
231
232
233
def crop(
    img: Image.Image,
    top: int,
    left: int,
    height: int,
    width: int,
) -> Image.Image:

vfdev's avatar
vfdev committed
234
    if not _is_pil_image(img):
235
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
vfdev's avatar
vfdev committed
236
237

    return img.crop((left, top, left + width, top + height))
vfdev's avatar
vfdev committed
238
239
240


@torch.jit.unused
241
242
def resize(
    img: Image.Image,
243
    size: Union[List[int], int],
244
    interpolation: int = _pil_constants.BILINEAR,
245
246
) -> Image.Image:

vfdev's avatar
vfdev committed
247
    if not _is_pil_image(img):
248
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
249
    if not (isinstance(size, list) and len(size) == 2):
250
        raise TypeError(f"Got inappropriate size arg: {size}")
vfdev's avatar
vfdev committed
251

252
    return img.resize(tuple(size[::-1]), interpolation)
vfdev's avatar
vfdev committed
253
254
255


@torch.jit.unused
256
257
258
259
260
261
def _parse_fill(
    fill: Optional[Union[float, List[float], Tuple[float, ...]]],
    img: Image.Image,
    name: str = "fillcolor",
) -> Dict[str, Optional[Union[float, List[float], Tuple[float, ...]]]]:

262
    # Process fill color for affine transforms
263
    num_bands = get_image_num_channels(img)
vfdev's avatar
vfdev committed
264
265
266
267
    if fill is None:
        fill = 0
    if isinstance(fill, (int, float)) and num_bands > 1:
        fill = tuple([fill] * num_bands)
268
269
    if isinstance(fill, (list, tuple)):
        if len(fill) != num_bands:
270
            msg = "The number of elements in 'fill' does not match the number of bands of the image ({} != {})"
271
272
273
            raise ValueError(msg.format(len(fill), num_bands))

        fill = tuple(fill)
vfdev's avatar
vfdev committed
274

275
276
277
278
279
280
    if img.mode != "F":
        if isinstance(fill, (list, tuple)):
            fill = tuple(int(x) for x in fill)
        else:
            fill = int(fill)

281
    return {name: fill}
vfdev's avatar
vfdev committed
282
283
284


@torch.jit.unused
285
286
287
def affine(
    img: Image.Image,
    matrix: List[float],
288
    interpolation: int = _pil_constants.NEAREST,
289
    fill: Optional[Union[int, float, Sequence[int], Sequence[float]]] = None,
290
291
) -> Image.Image:

vfdev's avatar
vfdev committed
292
    if not _is_pil_image(img):
293
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
vfdev's avatar
vfdev committed
294
295

    output_size = img.size
296
    opts = _parse_fill(fill, img)
297
    return img.transform(output_size, _pil_constants.AFFINE, matrix, interpolation, **opts)
vfdev's avatar
vfdev committed
298
299
300


@torch.jit.unused
301
302
303
def rotate(
    img: Image.Image,
    angle: float,
304
    interpolation: int = _pil_constants.NEAREST,
305
306
    expand: bool = False,
    center: Optional[Tuple[int, int]] = None,
307
    fill: Optional[Union[int, float, Sequence[int], Sequence[float]]] = None,
308
309
) -> Image.Image:

vfdev's avatar
vfdev committed
310
    if not _is_pil_image(img):
311
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
vfdev's avatar
vfdev committed
312

313
    opts = _parse_fill(fill, img)
314
    return img.rotate(angle, interpolation, expand, center, **opts)
315
316
317


@torch.jit.unused
318
319
def perspective(
    img: Image.Image,
320
    perspective_coeffs: List[float],
321
    interpolation: int = _pil_constants.BICUBIC,
322
    fill: Optional[Union[int, float, Sequence[int], Sequence[float]]] = None,
323
324
) -> Image.Image:

325
    if not _is_pil_image(img):
326
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
327

328
    opts = _parse_fill(fill, img)
329

330
    return img.transform(img.size, _pil_constants.PERSPECTIVE, perspective_coeffs, interpolation, **opts)
331
332
333


@torch.jit.unused
334
def to_grayscale(img: Image.Image, num_output_channels: int) -> Image.Image:
335
    if not _is_pil_image(img):
336
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
337
338

    if num_output_channels == 1:
339
        img = img.convert("L")
340
    elif num_output_channels == 3:
341
        img = img.convert("L")
342
343
        np_img = np.array(img, dtype=np.uint8)
        np_img = np.dstack([np_img, np_img, np_img])
344
        img = Image.fromarray(np_img, "RGB")
345
    else:
346
        raise ValueError("num_output_channels should be either 1 or 3")
347
348

    return img
349
350
351


@torch.jit.unused
352
def invert(img: Image.Image) -> Image.Image:
353
    if not _is_pil_image(img):
354
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
355
356
357
358
    return ImageOps.invert(img)


@torch.jit.unused
359
def posterize(img: Image.Image, bits: int) -> Image.Image:
360
    if not _is_pil_image(img):
361
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
362
363
364
365
    return ImageOps.posterize(img, bits)


@torch.jit.unused
366
def solarize(img: Image.Image, threshold: int) -> Image.Image:
367
    if not _is_pil_image(img):
368
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
369
370
371
372
    return ImageOps.solarize(img, threshold)


@torch.jit.unused
373
def adjust_sharpness(img: Image.Image, sharpness_factor: float) -> Image.Image:
374
    if not _is_pil_image(img):
375
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
376
377
378
379
380
381
382

    enhancer = ImageEnhance.Sharpness(img)
    img = enhancer.enhance(sharpness_factor)
    return img


@torch.jit.unused
383
def autocontrast(img: Image.Image) -> Image.Image:
384
    if not _is_pil_image(img):
385
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
386
387
388
389
    return ImageOps.autocontrast(img)


@torch.jit.unused
390
def equalize(img: Image.Image) -> Image.Image:
391
    if not _is_pil_image(img):
392
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
393
    return ImageOps.equalize(img)