video_utils.py 12.3 KB
Newer Older
1
import bisect
2
from fractions import Fraction
3
4
import math
import torch
5
6
7
from torchvision.io import (
    _read_video_timestamps_from_file,
    _read_video_from_file,
8
    _probe_video_from_file
9
)
10
11
from torchvision.io import read_video_timestamps, read_video

12
13
from .utils import tqdm

14

15
16
17
18
19
20
21
22
23
24
25
26
def pts_convert(pts, timebase_from, timebase_to, round_func=math.floor):
    """convert pts between different time bases
    Args:
        pts: presentation timestamp, float
        timebase_from: original timebase. Fraction
        timebase_to: new timebase. Fraction
        round_func: rounding function.
    """
    new_pts = Fraction(pts, 1) * timebase_from / timebase_to
    return round_func(new_pts)


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def unfold(tensor, size, step, dilation=1):
    """
    similar to tensor.unfold, but with the dilation
    and specialized for 1d tensors

    Returns all consecutive windows of `size` elements, with
    `step` between windows. The distance between each element
    in a window is given by `dilation`.
    """
    assert tensor.dim() == 1
    o_stride = tensor.stride(0)
    numel = tensor.numel()
    new_stride = (step * o_stride, dilation * o_stride)
    new_size = ((numel - (dilation * (size - 1) + 1)) // step + 1, size)
    if new_size[0] < 1:
        new_size = (0, size)
    return torch.as_strided(tensor, new_size, new_stride)


46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
class _DummyDataset(object):
    """
    Dummy dataset used for DataLoader in VideoClips.
    Defined at top level so it can be pickled when forking.
    """
    def __init__(self, x):
        self.x = x

    def __len__(self):
        return len(self.x)

    def __getitem__(self, idx):
        return read_video_timestamps(self.x[idx])


61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
class VideoClips(object):
    """
    Given a list of video files, computes all consecutive subvideos of size
    `clip_length_in_frames`, where the distance between each subvideo in the
    same video is defined by `frames_between_clips`.
    If `frame_rate` is specified, it will also resample all the videos to have
    the same frame rate, and the clips will refer to this frame rate.

    Creating this instance the first time is time-consuming, as it needs to
    decode all the videos in `video_paths`. It is recommended that you
    cache the results after instantiation of the class.

    Recreating the clips for different clip lengths is fast, and can be done
    with the `compute_clips` method.

    Arguments:
        video_paths (List[str]): paths to the video files
        clip_length_in_frames (int): size of a clip in number of frames
        frames_between_clips (int): step (in frames) between each clip
        frame_rate (int, optional): if specified, it will resample the video
            so that it has `frame_rate`, and then the clips will be defined
            on the resampled video
ekosman's avatar
ekosman committed
83
84
        num_workers (int): how many subprocesses to use for data loading.
            0 means that the data will be loaded in the main process. (default: 0)
85
86
    """
    def __init__(self, video_paths, clip_length_in_frames=16, frames_between_clips=1,
87
88
                 frame_rate=None, _precomputed_metadata=None, num_workers=0,
                 _video_width=0, _video_height=0, _video_min_dimension=0,
89
                 _audio_samples=0, _audio_channels=0):
90

91
        self.video_paths = video_paths
92
        self.num_workers = num_workers
93
94

        # these options are not valid for pyav backend
95
96
97
98
        self._video_width = _video_width
        self._video_height = _video_height
        self._video_min_dimension = _video_min_dimension
        self._audio_samples = _audio_samples
99
        self._audio_channels = _audio_channels
ekosman's avatar
ekosman committed
100

101
102
103
104
        if _precomputed_metadata is None:
            self._compute_frame_pts()
        else:
            self._init_from_metadata(_precomputed_metadata)
105
106
        self.compute_clips(clip_length_in_frames, frames_between_clips, frame_rate)

107
108
109
    def _collate_fn(self, x):
        return x

110
111
    def _compute_frame_pts(self):
        self.video_pts = []
112
        self.video_fps = []
113
114
115
116
117

        # strategy: use a DataLoader to parallelize read_video_timestamps
        # so need to create a dummy dataset first
        import torch.utils.data
        dl = torch.utils.data.DataLoader(
118
            _DummyDataset(self.video_paths),
119
            batch_size=16,
120
            num_workers=self.num_workers,
121
            collate_fn=self._collate_fn)
122
123
124
125

        with tqdm(total=len(dl)) as pbar:
            for batch in dl:
                pbar.update(1)
126
127
128
129
                clips, fps = list(zip(*batch))
                clips = [torch.as_tensor(c) for c in clips]
                self.video_pts.extend(clips)
                self.video_fps.extend(fps)
130

131
    def _init_from_metadata(self, metadata):
132
        self.video_paths = metadata["video_paths"]
133
134
        assert len(self.video_paths) == len(metadata["video_pts"])
        self.video_pts = metadata["video_pts"]
135
136
        assert len(self.video_paths) == len(metadata["video_fps"])
        self.video_fps = metadata["video_fps"]
137
138
139
140
141
142

    @property
    def metadata(self):
        _metadata = {
            "video_paths": self.video_paths,
            "video_pts": self.video_pts,
143
            "video_fps": self.video_fps
144
        }
145
        return _metadata
146
147
148
149

    def subset(self, indices):
        video_paths = [self.video_paths[i] for i in indices]
        video_pts = [self.video_pts[i] for i in indices]
150
        video_fps = [self.video_fps[i] for i in indices]
151
        metadata = {
152
            "video_paths": video_paths,
153
            "video_pts": video_pts,
154
            "video_fps": video_fps
155
156
        }
        return type(self)(video_paths, self.num_frames, self.step, self.frame_rate,
157
158
159
160
                          _precomputed_metadata=metadata, num_workers=self.num_workers,
                          _video_width=self._video_width,
                          _video_height=self._video_height,
                          _video_min_dimension=self._video_min_dimension,
161
162
                          _audio_samples=self._audio_samples,
                          _audio_channels=self._audio_channels)
163

164
165
    @staticmethod
    def compute_clips_for_video(video_pts, num_frames, step, fps, frame_rate):
166
167
168
169
        if fps is None:
            # if for some reason the video doesn't have fps (because doesn't have a video stream)
            # set the fps to 1. The value doesn't matter, because video_pts is empty anyway
            fps = 1
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        if frame_rate is None:
            frame_rate = fps
        total_frames = len(video_pts) * (float(frame_rate) / fps)
        idxs = VideoClips._resample_video_idx(int(math.floor(total_frames)), fps, frame_rate)
        video_pts = video_pts[idxs]
        clips = unfold(video_pts, num_frames, step)
        if isinstance(idxs, slice):
            idxs = [idxs] * len(clips)
        else:
            idxs = unfold(idxs, num_frames, step)
        return clips, idxs

    def compute_clips(self, num_frames, step, frame_rate=None):
        """
        Compute all consecutive sequences of clips from video_pts.
        Always returns clips of size `num_frames`, meaning that the
        last few frames in a video can potentially be dropped.

        Arguments:
            num_frames (int): number of frames for the clip
            step (int): distance between two clips
        """
        self.num_frames = num_frames
        self.step = step
        self.frame_rate = frame_rate
        self.clips = []
        self.resampling_idxs = []
197
198
199
200
        for video_pts, fps in zip(self.video_pts, self.video_fps):
            clips, idxs = self.compute_clips_for_video(video_pts, num_frames, step, fps, frame_rate)
            self.clips.append(clips)
            self.resampling_idxs.append(idxs)
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        clip_lengths = torch.as_tensor([len(v) for v in self.clips])
        self.cumulative_sizes = clip_lengths.cumsum(0).tolist()

    def __len__(self):
        return self.num_clips()

    def num_videos(self):
        return len(self.video_paths)

    def num_clips(self):
        """
        Number of subclips that are available in the video list.
        """
        return self.cumulative_sizes[-1]

    def get_clip_location(self, idx):
        """
        Converts a flattened representation of the indices into a video_idx, clip_idx
        representation.
        """
        video_idx = bisect.bisect_right(self.cumulative_sizes, idx)
        if video_idx == 0:
            clip_idx = idx
        else:
            clip_idx = idx - self.cumulative_sizes[video_idx - 1]
        return video_idx, clip_idx

    @staticmethod
    def _resample_video_idx(num_frames, original_fps, new_fps):
        step = float(original_fps) / new_fps
        if step.is_integer():
            # optimization: if step is integer, don't need to perform
            # advanced indexing
            step = int(step)
            return slice(None, None, step)
        idxs = torch.arange(num_frames, dtype=torch.float32) * step
        idxs = idxs.floor().to(torch.int64)
        return idxs

    def get_clip(self, idx):
        """
        Gets a subclip from a list of videos.

        Arguments:
            idx (int): index of the subclip. Must be between 0 and num_clips().

        Returns:
            video (Tensor)
            audio (Tensor)
            info (Dict)
            video_idx (int): index of the video in `video_paths`
        """
        if idx >= self.num_clips():
            raise IndexError("Index {} out of range "
                             "({} number of clips)".format(idx, self.num_clips()))
        video_idx, clip_idx = self.get_clip_location(idx)
        video_path = self.video_paths[video_idx]
        clip_pts = self.clips[video_idx][clip_idx]
259

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        from torchvision import get_video_backend
        backend = get_video_backend()

        if backend == "pyav":
            # check for invalid options
            if self._video_width != 0:
                raise ValueError("pyav backend doesn't support _video_width != 0")
            if self._video_height != 0:
                raise ValueError("pyav backend doesn't support _video_height != 0")
            if self._video_min_dimension != 0:
                raise ValueError("pyav backend doesn't support _video_min_dimension != 0")
            if self._audio_samples != 0:
                raise ValueError("pyav backend doesn't support _audio_samples != 0")

        if backend == "pyav":
275
276
277
278
            start_pts = clip_pts[0].item()
            end_pts = clip_pts[-1].item()
            video, audio, info = read_video(video_path, start_pts, end_pts)
        else:
279
280
281
            info = _probe_video_from_file(video_path)
            video_fps = info["video_fps"]
            audio_fps = None
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

            video_start_pts = clip_pts[0].item()
            video_end_pts = clip_pts[-1].item()

            audio_start_pts, audio_end_pts = 0, -1
            audio_timebase = Fraction(0, 1)
            if "audio_timebase" in info:
                audio_timebase = info["audio_timebase"]
                audio_start_pts = pts_convert(
                    video_start_pts,
                    info["video_timebase"],
                    info["audio_timebase"],
                    math.floor,
                )
                audio_end_pts = pts_convert(
297
                    video_end_pts,
298
299
300
301
                    info["video_timebase"],
                    info["audio_timebase"],
                    math.ceil,
                )
302
                audio_fps = info["audio_sample_rate"]
303
304
            video, audio, info = _read_video_from_file(
                video_path,
305
306
307
                video_width=self._video_width,
                video_height=self._video_height,
                video_min_dimension=self._video_min_dimension,
308
309
                video_pts_range=(video_start_pts, video_end_pts),
                video_timebase=info["video_timebase"],
310
                audio_samples=self._audio_samples,
311
                audio_channels=self._audio_channels,
312
313
314
                audio_pts_range=(audio_start_pts, audio_end_pts),
                audio_timebase=audio_timebase,
            )
315
316
317
318
319

            info = {"video_fps": video_fps}
            if audio_fps is not None:
                info["audio_fps"] = audio_fps

320
321
322
323
324
325
        if self.frame_rate is not None:
            resampling_idx = self.resampling_idxs[video_idx][clip_idx]
            if isinstance(resampling_idx, torch.Tensor):
                resampling_idx = resampling_idx - resampling_idx[0]
            video = video[resampling_idx]
            info["video_fps"] = self.frame_rate
326
        assert len(video) == self.num_frames, "{} x {}".format(video.shape, self.num_frames)
327
        return video, audio, info, video_idx