transforms.py 6.82 KB
Newer Older
1
from __future__ import division
soumith's avatar
soumith committed
2
3
4
import torch
import math
import random
5
from PIL import Image, ImageOps
6
import numpy as np
7
import numbers
Soumith Chintala's avatar
Soumith Chintala committed
8
import types
soumith's avatar
soumith committed
9
10

class Compose(object):
Adam Paszke's avatar
Adam Paszke committed
11
12
13
14
15
16
17
18
19
20
    """Composes several transforms together.

    Args:
        transforms (List[Transform]): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
21
    """
soumith's avatar
soumith committed
22
23
24
25
26
27
28
29
30
31
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img


class ToTensor(object):
Adam Paszke's avatar
Adam Paszke committed
32
33
34
    """Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
    """
soumith's avatar
soumith committed
35
    def __call__(self, pic):
36
37
38
39
40
41
        if isinstance(pic, np.ndarray):
            # handle numpy array
            img = torch.from_numpy(pic)
        else:
            # handle PIL Image
            img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
42
            img = img.view(pic.size[1], pic.size[0], len(pic.mode))
Soumith Chintala's avatar
Soumith Chintala committed
43
            # put it from HWC to CHW format
44
            # yikes, this transpose takes 80% of the loading time/CPU
Soumith Chintala's avatar
Soumith Chintala committed
45
            img = img.transpose(0, 1).transpose(0, 2).contiguous()
46
47
        return img.float().div(255)

Adam Paszke's avatar
Adam Paszke committed
48

49
class ToPILImage(object):
Adam Paszke's avatar
Adam Paszke committed
50
    """Converts a torch.*Tensor of range [0, 1] and shape C x H x W
51
52
53
54
55
56
57
58
59
60
61
62
    or numpy ndarray of dtype=uint8, range[0, 255] and shape H x W x C
    to a PIL.Image of range [0, 255]
    """
    def __call__(self, pic):
        if isinstance(pic, np.ndarray):
            # handle numpy array
            img = Image.fromarray(pic)
        else:
            npimg = pic.mul(255).byte().numpy()
            npimg = np.transpose(npimg, (1,2,0))
            img = Image.fromarray(npimg)
        return img
soumith's avatar
soumith committed
63
64

class Normalize(object):
Adam Paszke's avatar
Adam Paszke committed
65
    """Given mean: (R, G, B) and std: (R, G, B),
66
67
68
    will normalize each channel of the torch.*Tensor, i.e.
    channel = (channel - mean) / std
    """
soumith's avatar
soumith committed
69
70
71
72
73
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, tensor):
74
        # TODO: make efficient
soumith's avatar
soumith committed
75
76
77
78
79
80
        for t, m, s in zip(tensor, self.mean, self.std):
            t.sub_(m).div_(s)
        return tensor


class Scale(object):
Adam Paszke's avatar
Adam Paszke committed
81
    """Rescales the input PIL.Image to the given 'size'.
82
83
84
85
86
87
    'size' will be the size of the smaller edge.
    For example, if height > width, then image will be
    rescaled to (size * height / width, size)
    size: size of the smaller edge
    interpolation: Default: PIL.Image.BILINEAR
    """
soumith's avatar
soumith committed
88
89
90
91
92
93
94
95
96
    def __init__(self, size, interpolation=Image.BILINEAR):
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        w, h = img.size
        if (w <= h and w == self.size) or (h <= w and h == self.size):
            return img
        if w < h:
97
98
99
            ow = self.size
            oh = int(self.size * h / w)
            return img.resize((ow, oh), self.interpolation)
soumith's avatar
soumith committed
100
        else:
101
102
103
            oh = self.size
            ow = int(self.size * w / h)
            return img.resize((ow, oh), self.interpolation)
soumith's avatar
soumith committed
104
105
106


class CenterCrop(object):
107
108
109
110
    """Crops the given PIL.Image at the center to have a region of
    the given size. size can be a tuple (target_height, target_width)
    or an integer, in which case the target will be of a square shape (size, size)
    """
soumith's avatar
soumith committed
111
    def __init__(self, size):
112
113
114
115
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
soumith's avatar
soumith committed
116
117
118

    def __call__(self, img):
        w, h = img.size
119
        th, tw = self.size
120
121
        x1 = int(round((w - tw) / 2.))
        y1 = int(round((h - th) / 2.))
122
        return img.crop((x1, y1, x1 + tw, y1 + th))
soumith's avatar
soumith committed
123
124


125
126
127
128
129
130
131
132
133
134
135
class Pad(object):
    """Pads the given PIL.Image on all sides with the given "pad" value"""
    def __init__(self, padding, fill=0):
        assert isinstance(padding, numbers.Number)
        assert isinstance(fill, numbers.Number)
        self.padding = padding
        self.fill = fill

    def __call__(self, img):
        return ImageOps.expand(img, border=self.padding, fill=self.fill)

Soumith Chintala's avatar
Soumith Chintala committed
136
class Lambda(object):
Adam Paszke's avatar
Adam Paszke committed
137
    """Applies a lambda as a transform."""
Soumith Chintala's avatar
Soumith Chintala committed
138
139
140
141
142
143
144
    def __init__(self, lambd):
        assert type(lambd) is types.LambdaType
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

145

soumith's avatar
soumith committed
146
class RandomCrop(object):
147
148
149
150
    """Crops the given PIL.Image at a random location to have a region of
    the given size. size can be a tuple (target_height, target_width)
    or an integer, in which case the target will be of a square shape (size, size)
    """
soumith's avatar
soumith committed
151
    def __init__(self, size, padding=0):
152
153
154
155
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
soumith's avatar
soumith committed
156
157
158
159
        self.padding = padding

    def __call__(self, img):
        if self.padding > 0:
160
            img = ImageOps.expand(img, border=self.padding, fill=0)
soumith's avatar
soumith committed
161
162

        w, h = img.size
163
164
        th, tw = self.size
        if w == tw and h == th:
soumith's avatar
soumith committed
165
166
            return img

167
168
169
        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th))
soumith's avatar
soumith committed
170
171
172


class RandomHorizontalFlip(object):
173
174
    """Randomly horizontally flips the given PIL.Image with a probability of 0.5
    """
soumith's avatar
soumith committed
175
176
177
178
179
180
181
    def __call__(self, img):
        if random.random() < 0.5:
            return img.transpose(Image.FLIP_LEFT_RIGHT)
        return img


class RandomSizedCrop(object):
182
183
184
185
186
187
    """Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size
    and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
    This is popularly used to train the Inception networks
    size: size of the smaller edge
    interpolation: Default: PIL.Image.BILINEAR
    """
soumith's avatar
soumith committed
188
189
190
191
192
193
194
195
    def __init__(self, size, interpolation=Image.BILINEAR):
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        for attempt in range(10):
            area = img.size[0] * img.size[1]
            target_area = random.uniform(0.08, 1.0) * area
196
            aspect_ratio = random.uniform(3. / 4, 4. / 3)
soumith's avatar
soumith committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                w, h = h, w

            if w <= img.size[0] and h <= img.size[1]:
                x1 = random.randint(0, img.size[0] - w)
                y1 = random.randint(0, img.size[1] - h)

                img = img.crop((x1, y1, x1 + w, y1 + h))
                assert(img.size == (w, h))

                return img.resize((self.size, self.size), self.interpolation)

        # Fallback
        scale = Scale(self.size, interpolation=self.interpolation)
        crop = CenterCrop(self.size)
        return crop(scale(img))