README.rst 10.3 KB
Newer Older
Soumith Chintala's avatar
Soumith Chintala committed
1
torchvision
Xiuyan Ni's avatar
Xiuyan Ni committed
2
===========
Thomas Grainger's avatar
Thomas Grainger committed
3

4
5
6
7
.. image:: https://pepy.tech/badge/torchvision
    :target: https://pepy.tech/project/torchvision

.. image:: https://img.shields.io/badge/dynamic/json.svg?label=docs&url=https%3A%2F%2Fpypi.org%2Fpypi%2Ftorchvision%2Fjson&query=%24.info.version&colorB=brightgreen&prefix=v
8
    :target: https://pytorch.org/vision/stable/index.html
9

10

11
The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.
Thomas Grainger's avatar
Thomas Grainger committed
12

Francisco Massa's avatar
Francisco Massa committed
13

Thomas Grainger's avatar
Thomas Grainger committed
14
15
16
Installation
============

17
18
19
20
21
22
23
We recommend Anaconda as Python package management system. Please refer to `pytorch.org <https://pytorch.org/>`_
for the detail of PyTorch (``torch``) installation. The following is the corresponding ``torchvision`` versions and
supported Python versions.

+--------------------------+--------------------------+---------------------------------+
| ``torch``                | ``torchvision``          | ``python``                      |
+==========================+==========================+=================================+
Joao Gomes's avatar
Joao Gomes committed
24
25
| ``main`` / ``nightly``   | ``main`` / ``nightly``   | ``>=3.7``, ``<=3.10``           |
+--------------------------+--------------------------+---------------------------------+
26
27
| ``1.12.0``               | ``0.13.0``               | ``>=3.7``, ``<=3.10``           |
+--------------------------+--------------------------+---------------------------------+
Joao Gomes's avatar
Joao Gomes committed
28
| ``1.11.0``               | ``0.12.0``               | ``>=3.7``, ``<=3.10``           |
29
+--------------------------+--------------------------+---------------------------------+
Vasilis Vryniotis's avatar
Vasilis Vryniotis committed
30
31
| ``1.10.2``               | ``0.11.3``               | ``>=3.6``, ``<=3.9``            |
+--------------------------+--------------------------+---------------------------------+
32
| ``1.10.1``               | ``0.11.2``               | ``>=3.6``, ``<=3.9``            |
33
+--------------------------+--------------------------+---------------------------------+
34
35
| ``1.10.0``               | ``0.11.1``               | ``>=3.6``, ``<=3.9``            |
+--------------------------+--------------------------+---------------------------------+
36
37
| ``1.9.1``                | ``0.10.1``               | ``>=3.6``, ``<=3.9``            |
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
38
| ``1.9.0``                | ``0.10.0``               | ``>=3.6``, ``<=3.9``            |
39
+--------------------------+--------------------------+---------------------------------+
40
41
| ``1.8.2``                | ``0.9.2``                | ``>=3.6``, ``<=3.9``            |
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
42
| ``1.8.1``                | ``0.9.1``                | ``>=3.6``, ``<=3.9``            |
43
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
44
| ``1.8.0``                | ``0.9.0``                | ``>=3.6``, ``<=3.9``            |
45
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
46
| ``1.7.1``                | ``0.8.2``                | ``>=3.6``, ``<=3.9``            |
47
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
48
| ``1.7.0``                | ``0.8.1``                | ``>=3.6``, ``<=3.8``            |
49
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
50
| ``1.7.0``                | ``0.8.0``                | ``>=3.6``, ``<=3.8``            |
51
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
52
| ``1.6.0``                | ``0.7.0``                | ``>=3.6``, ``<=3.8``            |
53
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
54
| ``1.5.1``                | ``0.6.1``                | ``>=3.5``, ``<=3.8``            |
55
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
56
| ``1.5.0``                | ``0.6.0``                | ``>=3.5``, ``<=3.8``            |
57
58
59
60
61
62
63
64
65
66
67
68
69
+--------------------------+--------------------------+---------------------------------+
| ``1.4.0``                | ``0.5.0``                | ``==2.7``, ``>=3.5``, ``<=3.8`` |
+--------------------------+--------------------------+---------------------------------+
| ``1.3.1``                | ``0.4.2``                | ``==2.7``, ``>=3.5``, ``<=3.7`` |
+--------------------------+--------------------------+---------------------------------+
| ``1.3.0``                | ``0.4.1``                | ``==2.7``, ``>=3.5``, ``<=3.7`` |
+--------------------------+--------------------------+---------------------------------+
| ``1.2.0``                | ``0.4.0``                | ``==2.7``, ``>=3.5``, ``<=3.7`` |
+--------------------------+--------------------------+---------------------------------+
| ``1.1.0``                | ``0.3.0``                | ``==2.7``, ``>=3.5``, ``<=3.7`` |
+--------------------------+--------------------------+---------------------------------+
| ``<=1.0.1``              | ``0.2.2``                | ``==2.7``, ``>=3.5``, ``<=3.7`` |
+--------------------------+--------------------------+---------------------------------+
70

Soumith Chintala's avatar
Soumith Chintala committed
71
Anaconda:
Thomas Grainger's avatar
Thomas Grainger committed
72
73
74

.. code:: bash

Soumith Chintala's avatar
Soumith Chintala committed
75
    conda install torchvision -c pytorch
Thomas Grainger's avatar
Thomas Grainger committed
76

Soumith Chintala's avatar
Soumith Chintala committed
77
pip:
Thomas Grainger's avatar
Thomas Grainger committed
78
79
80

.. code:: bash

Thomas Grainger's avatar
Thomas Grainger committed
81
    pip install torchvision
Thomas Grainger's avatar
Thomas Grainger committed
82

Soumith Chintala's avatar
Soumith Chintala committed
83
84
85
86
87
From source:

.. code:: bash

    python setup.py install
88
89
    # or, for OSX
    # MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install
Soumith Chintala's avatar
Soumith Chintala committed
90

Vince's avatar
Vince committed
91

92
93
We don't officially support building from source using ``pip``, but *if* you do,
you'll need to use the ``--no-build-isolation`` flag.
94
In case building TorchVision from source fails, install the nightly version of PyTorch following
95
the linked guide on the  `contributing page <https://github.com/pytorch/vision/blob/main/CONTRIBUTING.md#development-installation>`_ and retry the install.
Vince's avatar
Vince committed
96

97
98
99
By default, GPU support is built if CUDA is found and ``torch.cuda.is_available()`` is true.
It's possible to force building GPU support by setting ``FORCE_CUDA=1`` environment variable,
which is useful when building a docker image.
100
101
102
103
104
105
106
107
108
109
110

Image Backend
=============
Torchvision currently supports the following image backends:

* `Pillow`_ (default)

* `Pillow-SIMD`_ - a **much faster** drop-in replacement for Pillow with SIMD. If installed will be used as the default.

* `accimage`_ - if installed can be activated by calling :code:`torchvision.set_image_backend('accimage')`

111
112
* `libpng`_ - can be installed via conda :code:`conda install libpng` or any of the package managers for debian-based and RHEL-based Linux distributions.

113
114
115
* `libjpeg`_ - can be installed via conda :code:`conda install jpeg` or any of the package managers for debian-based and RHEL-based Linux distributions. `libjpeg-turbo`_ can be used as well.

**Notes:** ``libpng`` and ``libjpeg`` must be available at compilation time in order to be available. Make sure that it is available on the standard library locations,
116
117
118
otherwise, add the include and library paths in the environment variables ``TORCHVISION_INCLUDE`` and ``TORCHVISION_LIBRARY``, respectively.

.. _libpng : http://www.libpng.org/pub/png/libpng.html
119
120
121
.. _Pillow : https://python-pillow.org/
.. _Pillow-SIMD : https://github.com/uploadcare/pillow-simd
.. _accimage: https://github.com/pytorch/accimage
122
123
.. _libjpeg: http://ijg.org/
.. _libjpeg-turbo: https://libjpeg-turbo.org/
124

125
126
127
128
Video Backend
=============
Torchvision currently supports the following video backends:

129
130
131
* `pyav`_ (default) - Pythonic binding for ffmpeg libraries.

.. _pyav : https://github.com/PyAV-Org/PyAV
132
133
134
135
136
137
138
139
140

* video_reader - This needs ffmpeg to be installed and torchvision to be built from source. There shouldn't be any conflicting version of ffmpeg installed. Currently, this is only supported on Linux.

.. code:: bash

     conda install -c conda-forge ffmpeg
     python setup.py install


141
142
143
Using the models on C++
=======================
TorchVision provides an example project for how to use the models on C++ using JIT Script.
144
145
146
147
148
149
150

Installation From source:

.. code:: bash

    mkdir build
    cd build
151
    # Add -DWITH_CUDA=on support for the CUDA if needed
152
    cmake ..
153
    make
154
155
    make install

156
Once installed, the library can be accessed in cmake (after properly configuring ``CMAKE_PREFIX_PATH``) via the :code:`TorchVision::TorchVision` target:
bmanga's avatar
bmanga committed
157
158
159
160

.. code:: rest

	find_package(TorchVision REQUIRED)
161
	target_link_libraries(my-target PUBLIC TorchVision::TorchVision)
bmanga's avatar
bmanga committed
162

163
164
165
166
The ``TorchVision`` package will also automatically look for the ``Torch`` package and add it as a dependency to ``my-target``,
so make sure that it is also available to cmake via the ``CMAKE_PREFIX_PATH``.

For an example setup, take a look at ``examples/cpp/hello_world``.
bmanga's avatar
bmanga committed
167

168
169
170
171
Python linking is disabled by default when compiling TorchVision with CMake, this allows you to run models without any Python 
dependency. In some special cases where TorchVision's operators are used from Python code, you may need to link to Python. This 
can be done by passing ``-DUSE_PYTHON=on`` to CMake.

172
173
174
175
176
TorchVision Operators
---------------------
In order to get the torchvision operators registered with torch (eg. for the JIT), all you need to do is to ensure that you
:code:`#include <torchvision/vision.h>` in your project.

177
178
Documentation
=============
scott-vsi's avatar
scott-vsi committed
179
You can find the API documentation on the pytorch website: https://pytorch.org/vision/stable/index.html
edgarriba's avatar
edgarriba committed
180

181
182
Contributing
============
vfdev's avatar
vfdev committed
183

184
See the `CONTRIBUTING <CONTRIBUTING.md>`_ file for how to help out.
Vincent QB's avatar
Vincent QB committed
185
186
187
188
189
190
191

Disclaimer on Datasets
======================

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!
192
193
194
195
196
197
198

Pre-trained Model License
=========================

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

More specifically, SWAG models are released under the CC-BY-NC 4.0 license. See `SWAG LICENSE <https://github.com/facebookresearch/SWAG/blob/main/LICENSE>`_ for additional details.