README.rst 10 KB
Newer Older
Soumith Chintala's avatar
Soumith Chintala committed
1
torchvision
Xiuyan Ni's avatar
Xiuyan Ni committed
2
===========
Thomas Grainger's avatar
Thomas Grainger committed
3

4
5
6
7
.. image:: https://pepy.tech/badge/torchvision
    :target: https://pepy.tech/project/torchvision

.. image:: https://img.shields.io/badge/dynamic/json.svg?label=docs&url=https%3A%2F%2Fpypi.org%2Fpypi%2Ftorchvision%2Fjson&query=%24.info.version&colorB=brightgreen&prefix=v
8
    :target: https://pytorch.org/vision/stable/index.html
9

10

11
The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.
Thomas Grainger's avatar
Thomas Grainger committed
12

Francisco Massa's avatar
Francisco Massa committed
13

Thomas Grainger's avatar
Thomas Grainger committed
14
15
16
Installation
============

17
18
19
20
21
22
23
We recommend Anaconda as Python package management system. Please refer to `pytorch.org <https://pytorch.org/>`_
for the detail of PyTorch (``torch``) installation. The following is the corresponding ``torchvision`` versions and
supported Python versions.

+--------------------------+--------------------------+---------------------------------+
| ``torch``                | ``torchvision``          | ``python``                      |
+==========================+==========================+=================================+
Joao Gomes's avatar
Joao Gomes committed
24
25
26
| ``main`` / ``nightly``   | ``main`` / ``nightly``   | ``>=3.7``, ``<=3.10``           |
+--------------------------+--------------------------+---------------------------------+
| ``1.11.0``               | ``0.12.0``               | ``>=3.7``, ``<=3.10``           |
27
+--------------------------+--------------------------+---------------------------------+
Vasilis Vryniotis's avatar
Vasilis Vryniotis committed
28
29
| ``1.10.2``               | ``0.11.3``               | ``>=3.6``, ``<=3.9``            |
+--------------------------+--------------------------+---------------------------------+
30
| ``1.10.1``               | ``0.11.2``               | ``>=3.6``, ``<=3.9``            |
31
+--------------------------+--------------------------+---------------------------------+
32
33
| ``1.10.0``               | ``0.11.1``               | ``>=3.6``, ``<=3.9``            |
+--------------------------+--------------------------+---------------------------------+
34
35
| ``1.9.1``                | ``0.10.1``               | ``>=3.6``, ``<=3.9``            |
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
36
| ``1.9.0``                | ``0.10.0``               | ``>=3.6``, ``<=3.9``            |
37
+--------------------------+--------------------------+---------------------------------+
38
39
| ``1.8.2``                | ``0.9.2``                | ``>=3.6``, ``<=3.9``            |
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
40
| ``1.8.1``                | ``0.9.1``                | ``>=3.6``, ``<=3.9``            |
41
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
42
| ``1.8.0``                | ``0.9.0``                | ``>=3.6``, ``<=3.9``            |
43
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
44
| ``1.7.1``                | ``0.8.2``                | ``>=3.6``, ``<=3.9``            |
45
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
46
| ``1.7.0``                | ``0.8.1``                | ``>=3.6``, ``<=3.8``            |
47
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
48
| ``1.7.0``                | ``0.8.0``                | ``>=3.6``, ``<=3.8``            |
49
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
50
| ``1.6.0``                | ``0.7.0``                | ``>=3.6``, ``<=3.8``            |
51
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
52
| ``1.5.1``                | ``0.6.1``                | ``>=3.5``, ``<=3.8``            |
53
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
54
| ``1.5.0``                | ``0.6.0``                | ``>=3.5``, ``<=3.8``            |
55
56
57
58
59
60
61
62
63
64
65
66
67
+--------------------------+--------------------------+---------------------------------+
| ``1.4.0``                | ``0.5.0``                | ``==2.7``, ``>=3.5``, ``<=3.8`` |
+--------------------------+--------------------------+---------------------------------+
| ``1.3.1``                | ``0.4.2``                | ``==2.7``, ``>=3.5``, ``<=3.7`` |
+--------------------------+--------------------------+---------------------------------+
| ``1.3.0``                | ``0.4.1``                | ``==2.7``, ``>=3.5``, ``<=3.7`` |
+--------------------------+--------------------------+---------------------------------+
| ``1.2.0``                | ``0.4.0``                | ``==2.7``, ``>=3.5``, ``<=3.7`` |
+--------------------------+--------------------------+---------------------------------+
| ``1.1.0``                | ``0.3.0``                | ``==2.7``, ``>=3.5``, ``<=3.7`` |
+--------------------------+--------------------------+---------------------------------+
| ``<=1.0.1``              | ``0.2.2``                | ``==2.7``, ``>=3.5``, ``<=3.7`` |
+--------------------------+--------------------------+---------------------------------+
68

Soumith Chintala's avatar
Soumith Chintala committed
69
Anaconda:
Thomas Grainger's avatar
Thomas Grainger committed
70
71
72

.. code:: bash

Soumith Chintala's avatar
Soumith Chintala committed
73
    conda install torchvision -c pytorch
Thomas Grainger's avatar
Thomas Grainger committed
74

Soumith Chintala's avatar
Soumith Chintala committed
75
pip:
Thomas Grainger's avatar
Thomas Grainger committed
76
77
78

.. code:: bash

Thomas Grainger's avatar
Thomas Grainger committed
79
    pip install torchvision
Thomas Grainger's avatar
Thomas Grainger committed
80

Soumith Chintala's avatar
Soumith Chintala committed
81
82
83
84
85
From source:

.. code:: bash

    python setup.py install
86
87
    # or, for OSX
    # MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install
Soumith Chintala's avatar
Soumith Chintala committed
88

Vince's avatar
Vince committed
89

90
In case building TorchVision from source fails, install the nightly version of PyTorch following
91
the linked guide on the  `contributing page <https://github.com/pytorch/vision/blob/main/CONTRIBUTING.md#development-installation>`_ and retry the install.
Vince's avatar
Vince committed
92

93
94
95
By default, GPU support is built if CUDA is found and ``torch.cuda.is_available()`` is true.
It's possible to force building GPU support by setting ``FORCE_CUDA=1`` environment variable,
which is useful when building a docker image.
96
97
98
99
100
101
102
103
104
105
106

Image Backend
=============
Torchvision currently supports the following image backends:

* `Pillow`_ (default)

* `Pillow-SIMD`_ - a **much faster** drop-in replacement for Pillow with SIMD. If installed will be used as the default.

* `accimage`_ - if installed can be activated by calling :code:`torchvision.set_image_backend('accimage')`

107
108
* `libpng`_ - can be installed via conda :code:`conda install libpng` or any of the package managers for debian-based and RHEL-based Linux distributions.

109
110
111
* `libjpeg`_ - can be installed via conda :code:`conda install jpeg` or any of the package managers for debian-based and RHEL-based Linux distributions. `libjpeg-turbo`_ can be used as well.

**Notes:** ``libpng`` and ``libjpeg`` must be available at compilation time in order to be available. Make sure that it is available on the standard library locations,
112
113
114
otherwise, add the include and library paths in the environment variables ``TORCHVISION_INCLUDE`` and ``TORCHVISION_LIBRARY``, respectively.

.. _libpng : http://www.libpng.org/pub/png/libpng.html
115
116
117
.. _Pillow : https://python-pillow.org/
.. _Pillow-SIMD : https://github.com/uploadcare/pillow-simd
.. _accimage: https://github.com/pytorch/accimage
118
119
.. _libjpeg: http://ijg.org/
.. _libjpeg-turbo: https://libjpeg-turbo.org/
120

121
122
123
124
Video Backend
=============
Torchvision currently supports the following video backends:

125
126
127
* `pyav`_ (default) - Pythonic binding for ffmpeg libraries.

.. _pyav : https://github.com/PyAV-Org/PyAV
128
129
130
131
132
133
134
135
136

* video_reader - This needs ffmpeg to be installed and torchvision to be built from source. There shouldn't be any conflicting version of ffmpeg installed. Currently, this is only supported on Linux.

.. code:: bash

     conda install -c conda-forge ffmpeg
     python setup.py install


137
138
139
Using the models on C++
=======================
TorchVision provides an example project for how to use the models on C++ using JIT Script.
140
141
142
143
144
145
146

Installation From source:

.. code:: bash

    mkdir build
    cd build
147
    # Add -DWITH_CUDA=on support for the CUDA if needed
148
    cmake ..
149
    make
150
151
    make install

152
Once installed, the library can be accessed in cmake (after properly configuring ``CMAKE_PREFIX_PATH``) via the :code:`TorchVision::TorchVision` target:
bmanga's avatar
bmanga committed
153
154
155
156

.. code:: rest

	find_package(TorchVision REQUIRED)
157
	target_link_libraries(my-target PUBLIC TorchVision::TorchVision)
bmanga's avatar
bmanga committed
158

159
160
161
162
The ``TorchVision`` package will also automatically look for the ``Torch`` package and add it as a dependency to ``my-target``,
so make sure that it is also available to cmake via the ``CMAKE_PREFIX_PATH``.

For an example setup, take a look at ``examples/cpp/hello_world``.
bmanga's avatar
bmanga committed
163

164
165
166
167
Python linking is disabled by default when compiling TorchVision with CMake, this allows you to run models without any Python 
dependency. In some special cases where TorchVision's operators are used from Python code, you may need to link to Python. This 
can be done by passing ``-DUSE_PYTHON=on`` to CMake.

168
169
170
171
172
TorchVision Operators
---------------------
In order to get the torchvision operators registered with torch (eg. for the JIT), all you need to do is to ensure that you
:code:`#include <torchvision/vision.h>` in your project.

173
174
Documentation
=============
scott-vsi's avatar
scott-vsi committed
175
You can find the API documentation on the pytorch website: https://pytorch.org/vision/stable/index.html
edgarriba's avatar
edgarriba committed
176

177
178
Contributing
============
vfdev's avatar
vfdev committed
179

180
See the `CONTRIBUTING <CONTRIBUTING.md>`_ file for how to help out.
Vincent QB's avatar
Vincent QB committed
181
182
183
184
185
186
187

Disclaimer on Datasets
======================

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!
188
189
190
191
192
193
194

Pre-trained Model License
=========================

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

More specifically, SWAG models are released under the CC-BY-NC 4.0 license. See `SWAG LICENSE <https://github.com/facebookresearch/SWAG/blob/main/LICENSE>`_ for additional details.