image.py 4.89 KB
Newer Older
1
2
3
4
import torch

import os
import os.path as osp
5
import importlib.machinery
6
7
8
9
10
11
12
13
14
15
16

_HAS_IMAGE_OPT = False

try:
    lib_dir = osp.join(osp.dirname(__file__), "..")

    loader_details = (
        importlib.machinery.ExtensionFileLoader,
        importlib.machinery.EXTENSION_SUFFIXES
    )

17
    extfinder = importlib.machinery.FileFinder(lib_dir, loader_details)  # type: ignore[arg-type]
18
19
20
21
22
23
24
25
    ext_specs = extfinder.find_spec("image")
    if ext_specs is not None:
        torch.ops.load_library(ext_specs.origin)
        _HAS_IMAGE_OPT = True
except (ImportError, OSError):
    pass


Francisco Massa's avatar
Francisco Massa committed
26
27
28
29
30
31
32
33
34
35
36
def _read_file(path: str) -> torch.Tensor:
    if not os.path.isfile(path):
        raise ValueError("Expected a valid file path.")

    size = os.path.getsize(path)
    if size == 0:
        raise ValueError("Expected a non empty file.")
    data = torch.from_file(path, dtype=torch.uint8, size=size)
    return data


37
def decode_png(input: torch.Tensor) -> torch.Tensor:
38
39
40
41
42
    """
    Decodes a PNG image into a 3 dimensional RGB Tensor.
    The values of the output tensor are uint8 between 0 and 255.

    Arguments:
Francisco Massa's avatar
Francisco Massa committed
43
        input (Tensor[1]): a one dimensional uint8 tensor containing
44
45
46
    the raw bytes of the PNG image.

    Returns:
47
        output (Tensor[3, image_height, image_width])
48
49
50
51
52
    """
    output = torch.ops.image.decode_png(input)
    return output


53
def read_png(path: str) -> torch.Tensor:
54
55
56
57
58
59
60
61
    """
    Reads a PNG image into a 3 dimensional RGB Tensor.
    The values of the output tensor are uint8 between 0 and 255.

    Arguments:
        path (str): path of the PNG image.

    Returns:
62
        output (Tensor[3, image_height, image_width])
63
    """
Francisco Massa's avatar
Francisco Massa committed
64
    data = _read_file(path)
65
    return decode_png(data)
66
67


68
def decode_jpeg(input: torch.Tensor) -> torch.Tensor:
69
70
71
72
    """
    Decodes a JPEG image into a 3 dimensional RGB Tensor.
    The values of the output tensor are uint8 between 0 and 255.
    Arguments:
Francisco Massa's avatar
Francisco Massa committed
73
        input (Tensor[1]): a one dimensional uint8 tensor containing
74
75
    the raw bytes of the JPEG image.
    Returns:
76
        output (Tensor[3, image_height, image_width])
77
78
79
80
81
    """
    output = torch.ops.image.decode_jpeg(input)
    return output


82
def read_jpeg(path: str) -> torch.Tensor:
83
84
85
86
87
88
    """
    Reads a JPEG image into a 3 dimensional RGB Tensor.
    The values of the output tensor are uint8 between 0 and 255.
    Arguments:
        path (str): path of the JPEG image.
    Returns:
89
        output (Tensor[3, image_height, image_width])
90
    """
Francisco Massa's avatar
Francisco Massa committed
91
    data = _read_file(path)
92
    return decode_jpeg(data)
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131


def encode_jpeg(input: torch.Tensor, quality: int = 75) -> torch.Tensor:
    """
    Takes an input tensor in CHW layout (or HW in the case of grayscale images)
    and returns a buffer with the contents of its corresponding JPEG file.
    Arguments:
        input (Tensor[channels, image_height, image_width]): int8 image tensor
    of `c` channels, where `c` must be 1 or 3.
        quality (int): Quality of the resulting JPEG file, it must be a number
    between 1 and 100. Default: 75
    Returns
        output (Tensor[1]): A one dimensional int8 tensor that contains the raw
    bytes of the JPEG file.
    """
    if quality < 1 or quality > 100:
        raise ValueError('Image quality should be a positive number '
                         'between 1 and 100')

    output = torch.ops.image.encode_jpeg(input, quality)
    return output


def write_jpeg(input: torch.Tensor, filename: str, quality: int = 75):
    """
    Takes an input tensor in CHW layout (or HW in the case of grayscale images)
    and saves it in a JPEG file.
    Arguments:
        input (Tensor[channels, image_height, image_width]): int8 image tensor
    of `c` channels, where `c` must be 1 or 3.
        filename (str): Path to save the image.
        quality (int): Quality of the resulting JPEG file, it must be a number
    between 1 and 100. Default: 75
    """
    if quality < 1 or quality > 100:
        raise ValueError('Image quality should be a positive number '
                         'between 1 and 100')

    torch.ops.image.write_jpeg(input, filename, quality)
Francisco Massa's avatar
Francisco Massa committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161


def decode_image(input: torch.Tensor) -> torch.Tensor:
    """
    Detects whether an image is a JPEG or PNG and performs the appropriate
    operation to decode the image into a 3 dimensional RGB Tensor.

    The values of the output tensor are uint8 between 0 and 255.

    Arguments:
        input (Tensor): a one dimensional uint8 tensor containing
        the raw bytes of the PNG or JPEG image.
    Returns:
        output (Tensor[3, image_height, image_width])
    """
    output = torch.ops.image.decode_image(input)
    return output


def read_image(path: str) -> torch.Tensor:
    """
    Reads a JPEG or PNG image into a 3 dimensional RGB Tensor.
    The values of the output tensor are uint8 between 0 and 255.
    Arguments:
        path (str): path of the JPEG or PNG image.
    Returns:
        output (Tensor[3, image_height, image_width])
    """
    data = _read_file(path)
    return decode_image(data)