image.py 3.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
from torch import nn, Tensor

import os
import os.path as osp
import importlib

_HAS_IMAGE_OPT = False

try:
    lib_dir = osp.join(osp.dirname(__file__), "..")

    loader_details = (
        importlib.machinery.ExtensionFileLoader,
        importlib.machinery.EXTENSION_SUFFIXES
    )

    extfinder = importlib.machinery.FileFinder(lib_dir, loader_details)
    ext_specs = extfinder.find_spec("image")
    if ext_specs is not None:
        torch.ops.load_library(ext_specs.origin)
        _HAS_IMAGE_OPT = True
except (ImportError, OSError):
    pass


def decode_png(input):
    # type: (Tensor) -> Tensor
    """
    Decodes a PNG image into a 3 dimensional RGB Tensor.
    The values of the output tensor are uint8 between 0 and 255.

    Arguments:
        input (Tensor[1]): a one dimensional int8 tensor containing
    the raw bytes of the PNG image.

    Returns:
        output (Tensor[image_width, image_height, 3])
    """
    if not isinstance(input, torch.Tensor) or input.numel() == 0 or input.ndim != 1:
        raise ValueError("Expected a non empty 1-dimensional tensor.")

    if not input.dtype == torch.uint8:
        raise ValueError("Expected a torch.uint8 tensor.")
    output = torch.ops.image.decode_png(input)
    return output


def read_png(path):
    # type: (str) -> Tensor
    """
    Reads a PNG image into a 3 dimensional RGB Tensor.
    The values of the output tensor are uint8 between 0 and 255.

    Arguments:
        path (str): path of the PNG image.

    Returns:
        output (Tensor[image_width, image_height, 3])
    """
    if not os.path.isfile(path):
        raise ValueError("Expected a valid file path.")

    size = os.path.getsize(path)
    if size == 0:
        raise ValueError("Expected a non empty file.")
    data = torch.from_file(path, dtype=torch.uint8, size=size)
    return decode_png(data)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109


def decode_jpeg(input):
    # type: (Tensor) -> Tensor
    """
    Decodes a JPEG image into a 3 dimensional RGB Tensor.
    The values of the output tensor are uint8 between 0 and 255.
    Arguments:
        input (Tensor[1]): a one dimensional int8 tensor containing
    the raw bytes of the JPEG image.
    Returns:
        output (Tensor[image_width, image_height, 3])
    """
    if not isinstance(input, torch.Tensor) or len(input) == 0 or input.ndim != 1:
        raise ValueError("Expected a non empty 1-dimensional tensor.")

    if not input.dtype == torch.uint8:
        raise ValueError("Expected a torch.uint8 tensor.")

    output = torch.ops.image.decode_jpeg(input)
    return output


def read_jpeg(path):
    # type: (str) -> Tensor
    """
    Reads a JPEG image into a 3 dimensional RGB Tensor.
    The values of the output tensor are uint8 between 0 and 255.
    Arguments:
        path (str): path of the JPEG image.
    Returns:
        output (Tensor[image_width, image_height, 3])
    """
    if not os.path.isfile(path):
        raise ValueError("Expected a valid file path.")

    size = os.path.getsize(path)
    if size == 0:
        raise ValueError("Expected a non empty file.")
    data = torch.from_file(path, dtype=torch.uint8, size=size)
    return decode_jpeg(data)