efficientnet.py 31.3 KB
Newer Older
1
2
import copy
import math
3
4
import warnings
from dataclasses import dataclass
5
from functools import partial
6
from typing import Any, Callable, Dict, Optional, List, Sequence, Tuple, Union
7

8
9
10
11
import torch
from torch import nn, Tensor
from torchvision.ops import StochasticDepth

12
from ..ops.misc import Conv2dNormActivation, SqueezeExcitation
13
from ..transforms._presets import ImageClassification, InterpolationMode
14
from ..utils import _log_api_usage_once
15
16
17
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
from ._utils import handle_legacy_interface, _ovewrite_named_param, _make_divisible
18
19


20
21
__all__ = [
    "EfficientNet",
22
23
24
25
26
27
28
29
30
31
32
    "EfficientNet_B0_Weights",
    "EfficientNet_B1_Weights",
    "EfficientNet_B2_Weights",
    "EfficientNet_B3_Weights",
    "EfficientNet_B4_Weights",
    "EfficientNet_B5_Weights",
    "EfficientNet_B6_Weights",
    "EfficientNet_B7_Weights",
    "EfficientNet_V2_S_Weights",
    "EfficientNet_V2_M_Weights",
    "EfficientNet_V2_L_Weights",
33
34
35
36
37
38
39
40
    "efficientnet_b0",
    "efficientnet_b1",
    "efficientnet_b2",
    "efficientnet_b3",
    "efficientnet_b4",
    "efficientnet_b5",
    "efficientnet_b6",
    "efficientnet_b7",
41
42
43
    "efficientnet_v2_s",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
44
]
45
46


47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
@dataclass
class _MBConvConfig:
    expand_ratio: float
    kernel: int
    stride: int
    input_channels: int
    out_channels: int
    num_layers: int
    block: Callable[..., nn.Module]

    @staticmethod
    def adjust_channels(channels: int, width_mult: float, min_value: Optional[int] = None) -> int:
        return _make_divisible(channels * width_mult, 8, min_value)


class MBConvConfig(_MBConvConfig):
    # Stores information listed at Table 1 of the EfficientNet paper & Table 4 of the EfficientNetV2 paper
64
65
66
67
68
69
70
71
    def __init__(
        self,
        expand_ratio: float,
        kernel: int,
        stride: int,
        input_channels: int,
        out_channels: int,
        num_layers: int,
72
73
74
        width_mult: float = 1.0,
        depth_mult: float = 1.0,
        block: Optional[Callable[..., nn.Module]] = None,
75
    ) -> None:
76
77
78
79
80
81
        input_channels = self.adjust_channels(input_channels, width_mult)
        out_channels = self.adjust_channels(out_channels, width_mult)
        num_layers = self.adjust_depth(num_layers, depth_mult)
        if block is None:
            block = MBConv
        super().__init__(expand_ratio, kernel, stride, input_channels, out_channels, num_layers, block)
82
83
84
85
86
87

    @staticmethod
    def adjust_depth(num_layers: int, depth_mult: float):
        return int(math.ceil(num_layers * depth_mult))


88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
class FusedMBConvConfig(_MBConvConfig):
    # Stores information listed at Table 4 of the EfficientNetV2 paper
    def __init__(
        self,
        expand_ratio: float,
        kernel: int,
        stride: int,
        input_channels: int,
        out_channels: int,
        num_layers: int,
        block: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        if block is None:
            block = FusedMBConv
        super().__init__(expand_ratio, kernel, stride, input_channels, out_channels, num_layers, block)


105
class MBConv(nn.Module):
106
107
108
109
110
111
112
    def __init__(
        self,
        cnf: MBConvConfig,
        stochastic_depth_prob: float,
        norm_layer: Callable[..., nn.Module],
        se_layer: Callable[..., nn.Module] = SqueezeExcitation,
    ) -> None:
113
114
115
        super().__init__()

        if not (1 <= cnf.stride <= 2):
116
            raise ValueError("illegal stride value")
117
118
119
120
121
122
123
124
125

        self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels

        layers: List[nn.Module] = []
        activation_layer = nn.SiLU

        # expand
        expanded_channels = cnf.adjust_channels(cnf.input_channels, cnf.expand_ratio)
        if expanded_channels != cnf.input_channels:
126
            layers.append(
127
                Conv2dNormActivation(
128
129
130
131
132
133
134
                    cnf.input_channels,
                    expanded_channels,
                    kernel_size=1,
                    norm_layer=norm_layer,
                    activation_layer=activation_layer,
                )
            )
135
136

        # depthwise
137
        layers.append(
138
            Conv2dNormActivation(
139
140
141
142
143
144
145
146
147
                expanded_channels,
                expanded_channels,
                kernel_size=cnf.kernel,
                stride=cnf.stride,
                groups=expanded_channels,
                norm_layer=norm_layer,
                activation_layer=activation_layer,
            )
        )
148
149
150

        # squeeze and excitation
        squeeze_channels = max(1, cnf.input_channels // 4)
151
        layers.append(se_layer(expanded_channels, squeeze_channels, activation=partial(nn.SiLU, inplace=True)))
152
153

        # project
154
        layers.append(
155
            Conv2dNormActivation(
156
157
158
                expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=None
            )
        )
159
160
161
162
163
164
165
166
167
168
169
170
171

        self.block = nn.Sequential(*layers)
        self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")
        self.out_channels = cnf.out_channels

    def forward(self, input: Tensor) -> Tensor:
        result = self.block(input)
        if self.use_res_connect:
            result = self.stochastic_depth(result)
            result += input
        return result


172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
class FusedMBConv(nn.Module):
    def __init__(
        self,
        cnf: FusedMBConvConfig,
        stochastic_depth_prob: float,
        norm_layer: Callable[..., nn.Module],
    ) -> None:
        super().__init__()

        if not (1 <= cnf.stride <= 2):
            raise ValueError("illegal stride value")

        self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels

        layers: List[nn.Module] = []
        activation_layer = nn.SiLU

        expanded_channels = cnf.adjust_channels(cnf.input_channels, cnf.expand_ratio)
        if expanded_channels != cnf.input_channels:
            # fused expand
            layers.append(
                Conv2dNormActivation(
                    cnf.input_channels,
                    expanded_channels,
                    kernel_size=cnf.kernel,
                    stride=cnf.stride,
                    norm_layer=norm_layer,
                    activation_layer=activation_layer,
                )
            )

            # project
            layers.append(
                Conv2dNormActivation(
                    expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=None
                )
            )
        else:
            layers.append(
                Conv2dNormActivation(
                    cnf.input_channels,
                    cnf.out_channels,
                    kernel_size=cnf.kernel,
                    stride=cnf.stride,
                    norm_layer=norm_layer,
                    activation_layer=activation_layer,
                )
            )

        self.block = nn.Sequential(*layers)
        self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")
        self.out_channels = cnf.out_channels

    def forward(self, input: Tensor) -> Tensor:
        result = self.block(input)
        if self.use_res_connect:
            result = self.stochastic_depth(result)
            result += input
        return result


233
234
class EfficientNet(nn.Module):
    def __init__(
235
        self,
236
        inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
237
238
239
240
        dropout: float,
        stochastic_depth_prob: float = 0.2,
        num_classes: int = 1000,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
241
        last_channel: Optional[int] = None,
242
        **kwargs: Any,
243
244
    ) -> None:
        """
245
        EfficientNet V1 and V2 main class
246
247

        Args:
248
            inverted_residual_setting (Sequence[Union[MBConvConfig, FusedMBConvConfig]]): Network structure
249
250
251
252
            dropout (float): The droupout probability
            stochastic_depth_prob (float): The stochastic depth probability
            num_classes (int): Number of classes
            norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
253
            last_channel (int): The number of channels on the penultimate layer
254
255
        """
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
256
        _log_api_usage_once(self)
257
258
259

        if not inverted_residual_setting:
            raise ValueError("The inverted_residual_setting should not be empty")
260
261
        elif not (
            isinstance(inverted_residual_setting, Sequence)
262
            and all([isinstance(s, _MBConvConfig) for s in inverted_residual_setting])
263
        ):
264
265
            raise TypeError("The inverted_residual_setting should be List[MBConvConfig]")

266
267
268
269
270
271
272
273
274
        if "block" in kwargs:
            warnings.warn(
                "The parameter 'block' is deprecated since 0.13 and will be removed 0.15. "
                "Please pass this information on 'MBConvConfig.block' instead."
            )
            if kwargs["block"] is not None:
                for s in inverted_residual_setting:
                    if isinstance(s, MBConvConfig):
                        s.block = kwargs["block"]
275
276
277
278
279
280
281
282

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        layers: List[nn.Module] = []

        # building first layer
        firstconv_output_channels = inverted_residual_setting[0].input_channels
283
        layers.append(
284
            Conv2dNormActivation(
285
286
287
                3, firstconv_output_channels, kernel_size=3, stride=2, norm_layer=norm_layer, activation_layer=nn.SiLU
            )
        )
288
289

        # building inverted residual blocks
290
        total_stage_blocks = sum(cnf.num_layers for cnf in inverted_residual_setting)
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        stage_block_id = 0
        for cnf in inverted_residual_setting:
            stage: List[nn.Module] = []
            for _ in range(cnf.num_layers):
                # copy to avoid modifications. shallow copy is enough
                block_cnf = copy.copy(cnf)

                # overwrite info if not the first conv in the stage
                if stage:
                    block_cnf.input_channels = block_cnf.out_channels
                    block_cnf.stride = 1

                # adjust stochastic depth probability based on the depth of the stage block
                sd_prob = stochastic_depth_prob * float(stage_block_id) / total_stage_blocks

306
                stage.append(block_cnf.block(block_cnf, sd_prob, norm_layer))
307
308
309
310
311
312
                stage_block_id += 1

            layers.append(nn.Sequential(*stage))

        # building last several layers
        lastconv_input_channels = inverted_residual_setting[-1].out_channels
313
        lastconv_output_channels = last_channel if last_channel is not None else 4 * lastconv_input_channels
314
        layers.append(
315
            Conv2dNormActivation(
316
317
318
319
320
321
322
                lastconv_input_channels,
                lastconv_output_channels,
                kernel_size=1,
                norm_layer=norm_layer,
                activation_layer=nn.SiLU,
            )
        )
323
324
325
326
327
328
329
330
331
332

        self.features = nn.Sequential(*layers)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.classifier = nn.Sequential(
            nn.Dropout(p=dropout, inplace=True),
            nn.Linear(lastconv_output_channels, num_classes),
        )

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
333
                nn.init.kaiming_normal_(m.weight, mode="fan_out")
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                init_range = 1.0 / math.sqrt(m.out_features)
                nn.init.uniform_(m.weight, -init_range, init_range)
                nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        x = self.features(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)

        x = self.classifier(x)

        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


358
def _efficientnet(
359
    inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
360
    dropout: float,
361
    last_channel: Optional[int],
362
    weights: Optional[WeightsEnum],
363
364
365
    progress: bool,
    **kwargs: Any,
) -> EfficientNet:
366
367
368
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

369
    model = EfficientNet(inverted_residual_setting, dropout, last_channel=last_channel, **kwargs)
370
371
372
373

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

374
375
376
    return model


377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
def _efficientnet_conf(
    arch: str,
    **kwargs: Any,
) -> Tuple[Sequence[Union[MBConvConfig, FusedMBConvConfig]], Optional[int]]:
    inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]]
    if arch.startswith("efficientnet_b"):
        bneck_conf = partial(MBConvConfig, width_mult=kwargs.pop("width_mult"), depth_mult=kwargs.pop("depth_mult"))
        inverted_residual_setting = [
            bneck_conf(1, 3, 1, 32, 16, 1),
            bneck_conf(6, 3, 2, 16, 24, 2),
            bneck_conf(6, 5, 2, 24, 40, 2),
            bneck_conf(6, 3, 2, 40, 80, 3),
            bneck_conf(6, 5, 1, 80, 112, 3),
            bneck_conf(6, 5, 2, 112, 192, 4),
            bneck_conf(6, 3, 1, 192, 320, 1),
        ]
        last_channel = None
    elif arch.startswith("efficientnet_v2_s"):
        inverted_residual_setting = [
            FusedMBConvConfig(1, 3, 1, 24, 24, 2),
            FusedMBConvConfig(4, 3, 2, 24, 48, 4),
            FusedMBConvConfig(4, 3, 2, 48, 64, 4),
            MBConvConfig(4, 3, 2, 64, 128, 6),
            MBConvConfig(6, 3, 1, 128, 160, 9),
            MBConvConfig(6, 3, 2, 160, 256, 15),
        ]
        last_channel = 1280
    elif arch.startswith("efficientnet_v2_m"):
        inverted_residual_setting = [
            FusedMBConvConfig(1, 3, 1, 24, 24, 3),
            FusedMBConvConfig(4, 3, 2, 24, 48, 5),
            FusedMBConvConfig(4, 3, 2, 48, 80, 5),
            MBConvConfig(4, 3, 2, 80, 160, 7),
            MBConvConfig(6, 3, 1, 160, 176, 14),
            MBConvConfig(6, 3, 2, 176, 304, 18),
            MBConvConfig(6, 3, 1, 304, 512, 5),
        ]
        last_channel = 1280
    elif arch.startswith("efficientnet_v2_l"):
        inverted_residual_setting = [
            FusedMBConvConfig(1, 3, 1, 32, 32, 4),
            FusedMBConvConfig(4, 3, 2, 32, 64, 7),
            FusedMBConvConfig(4, 3, 2, 64, 96, 7),
            MBConvConfig(4, 3, 2, 96, 192, 10),
            MBConvConfig(6, 3, 1, 192, 224, 19),
            MBConvConfig(6, 3, 2, 224, 384, 25),
            MBConvConfig(6, 3, 1, 384, 640, 7),
        ]
        last_channel = 1280
    else:
        raise ValueError(f"Unsupported model type {arch}")

    return inverted_residual_setting, last_channel


432
_COMMON_META: Dict[str, Any] = {
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    "categories": _IMAGENET_CATEGORIES,
    "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#efficientnet",
}


_COMMON_META_V1 = {
    **_COMMON_META,
    "min_size": (1, 1),
}


_COMMON_META_V2 = {
    **_COMMON_META,
    "min_size": (33, 33),
}


class EfficientNet_B0_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/efficientnet_b0_rwightman-3dd342df.pth",
        transforms=partial(
            ImageClassification, crop_size=224, resize_size=256, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 5288548,
459
460
461
462
            "metrics": {
                "acc@1": 77.692,
                "acc@5": 93.532,
            },
463
464
465
466
467
468
469
470
471
472
473
474
475
476
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_B1_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/efficientnet_b1_rwightman-533bc792.pth",
        transforms=partial(
            ImageClassification, crop_size=240, resize_size=256, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 7794184,
477
478
479
480
            "metrics": {
                "acc@1": 78.642,
                "acc@5": 94.186,
            },
481
482
483
484
485
486
487
488
489
490
491
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/efficientnet_b1-c27df63c.pth",
        transforms=partial(
            ImageClassification, crop_size=240, resize_size=255, interpolation=InterpolationMode.BILINEAR
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 7794184,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-lr-wd-crop-tuning",
492
493
494
495
            "metrics": {
                "acc@1": 79.838,
                "acc@5": 94.934,
            },
496
497
498
499
500
501
502
503
504
505
506
507
508
509
        },
    )
    DEFAULT = IMAGENET1K_V2


class EfficientNet_B2_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/efficientnet_b2_rwightman-bcdf34b7.pth",
        transforms=partial(
            ImageClassification, crop_size=288, resize_size=288, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 9109994,
510
511
512
513
            "metrics": {
                "acc@1": 80.608,
                "acc@5": 95.310,
            },
514
515
516
517
518
519
520
521
522
523
524
525
526
527
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_B3_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/efficientnet_b3_rwightman-cf984f9c.pth",
        transforms=partial(
            ImageClassification, crop_size=300, resize_size=320, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 12233232,
528
529
530
531
            "metrics": {
                "acc@1": 82.008,
                "acc@5": 96.054,
            },
532
533
534
535
536
537
538
539
540
541
542
543
544
545
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_B4_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/efficientnet_b4_rwightman-7eb33cd5.pth",
        transforms=partial(
            ImageClassification, crop_size=380, resize_size=384, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 19341616,
546
547
548
549
            "metrics": {
                "acc@1": 83.384,
                "acc@5": 96.594,
            },
550
551
552
553
554
555
556
557
558
559
560
561
562
563
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_B5_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/efficientnet_b5_lukemelas-b6417697.pth",
        transforms=partial(
            ImageClassification, crop_size=456, resize_size=456, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 30389784,
564
565
566
567
            "metrics": {
                "acc@1": 83.444,
                "acc@5": 96.628,
            },
568
569
570
571
572
573
574
575
576
577
578
579
580
581
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_B6_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/efficientnet_b6_lukemelas-c76e70fd.pth",
        transforms=partial(
            ImageClassification, crop_size=528, resize_size=528, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 43040704,
582
583
584
585
            "metrics": {
                "acc@1": 84.008,
                "acc@5": 96.916,
            },
586
587
588
589
590
591
592
593
594
595
596
597
598
599
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_B7_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/efficientnet_b7_lukemelas-dcc49843.pth",
        transforms=partial(
            ImageClassification, crop_size=600, resize_size=600, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 66347960,
600
601
602
603
            "metrics": {
                "acc@1": 84.122,
                "acc@5": 96.908,
            },
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_V2_S_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/efficientnet_v2_s-dd5fe13b.pth",
        transforms=partial(
            ImageClassification,
            crop_size=384,
            resize_size=384,
            interpolation=InterpolationMode.BILINEAR,
        ),
        meta={
            **_COMMON_META_V2,
            "num_params": 21458488,
621
622
623
624
            "metrics": {
                "acc@1": 84.228,
                "acc@5": 96.878,
            },
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_V2_M_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/efficientnet_v2_m-dc08266a.pth",
        transforms=partial(
            ImageClassification,
            crop_size=480,
            resize_size=480,
            interpolation=InterpolationMode.BILINEAR,
        ),
        meta={
            **_COMMON_META_V2,
            "num_params": 54139356,
642
643
644
645
            "metrics": {
                "acc@1": 85.112,
                "acc@5": 97.156,
            },
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_V2_L_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/efficientnet_v2_l-59c71312.pth",
        transforms=partial(
            ImageClassification,
            crop_size=480,
            resize_size=480,
            interpolation=InterpolationMode.BICUBIC,
            mean=(0.5, 0.5, 0.5),
            std=(0.5, 0.5, 0.5),
        ),
        meta={
            **_COMMON_META_V2,
            "num_params": 118515272,
665
666
667
668
            "metrics": {
                "acc@1": 85.808,
                "acc@5": 97.788,
            },
669
670
671
672
673
674
675
676
677
        },
    )
    DEFAULT = IMAGENET1K_V1


@handle_legacy_interface(weights=("pretrained", EfficientNet_B0_Weights.IMAGENET1K_V1))
def efficientnet_b0(
    *, weights: Optional[EfficientNet_B0_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
678
679
680
681
682
    """
    Constructs a EfficientNet B0 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
683
        weights (EfficientNet_B0_Weights, optional): The pretrained weights for the model
684
685
        progress (bool): If True, displays a progress bar of the download to stderr
    """
686
687
688
689
    weights = EfficientNet_B0_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b0", width_mult=1.0, depth_mult=1.0)
    return _efficientnet(inverted_residual_setting, 0.2, last_channel, weights, progress, **kwargs)
690
691


692
693
694
695
@handle_legacy_interface(weights=("pretrained", EfficientNet_B1_Weights.IMAGENET1K_V1))
def efficientnet_b1(
    *, weights: Optional[EfficientNet_B1_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
696
697
698
699
700
    """
    Constructs a EfficientNet B1 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
701
        weights (EfficientNet_B1_Weights, optional): The pretrained weights for the model
702
703
        progress (bool): If True, displays a progress bar of the download to stderr
    """
704
    weights = EfficientNet_B1_Weights.verify(weights)
705

706
707
    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b1", width_mult=1.0, depth_mult=1.1)
    return _efficientnet(inverted_residual_setting, 0.2, last_channel, weights, progress, **kwargs)
708

709
710
711
712
713

@handle_legacy_interface(weights=("pretrained", EfficientNet_B2_Weights.IMAGENET1K_V1))
def efficientnet_b2(
    *, weights: Optional[EfficientNet_B2_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
714
715
716
717
718
    """
    Constructs a EfficientNet B2 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
719
        weights (EfficientNet_B2_Weights, optional): The pretrained weights for the model
720
721
        progress (bool): If True, displays a progress bar of the download to stderr
    """
722
723
724
725
    weights = EfficientNet_B2_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b2", width_mult=1.1, depth_mult=1.2)
    return _efficientnet(inverted_residual_setting, 0.3, last_channel, weights, progress, **kwargs)
726
727


728
729
730
731
@handle_legacy_interface(weights=("pretrained", EfficientNet_B3_Weights.IMAGENET1K_V1))
def efficientnet_b3(
    *, weights: Optional[EfficientNet_B3_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
732
733
734
735
736
    """
    Constructs a EfficientNet B3 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
737
        weights (EfficientNet_B3_Weights, optional): The pretrained weights for the model
738
739
        progress (bool): If True, displays a progress bar of the download to stderr
    """
740
741
742
743
    weights = EfficientNet_B3_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b3", width_mult=1.2, depth_mult=1.4)
    return _efficientnet(inverted_residual_setting, 0.3, last_channel, weights, progress, **kwargs)
744
745


746
747
748
749
@handle_legacy_interface(weights=("pretrained", EfficientNet_B4_Weights.IMAGENET1K_V1))
def efficientnet_b4(
    *, weights: Optional[EfficientNet_B4_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
750
751
752
753
754
    """
    Constructs a EfficientNet B4 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
755
        weights (EfficientNet_B4_Weights, optional): The pretrained weights for the model
756
757
        progress (bool): If True, displays a progress bar of the download to stderr
    """
758
    weights = EfficientNet_B4_Weights.verify(weights)
759

760
761
    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b4", width_mult=1.4, depth_mult=1.8)
    return _efficientnet(inverted_residual_setting, 0.4, last_channel, weights, progress, **kwargs)
762

763
764
765
766
767

@handle_legacy_interface(weights=("pretrained", EfficientNet_B5_Weights.IMAGENET1K_V1))
def efficientnet_b5(
    *, weights: Optional[EfficientNet_B5_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
768
769
770
771
772
    """
    Constructs a EfficientNet B5 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
773
        weights (EfficientNet_B5_Weights, optional): The pretrained weights for the model
774
775
        progress (bool): If True, displays a progress bar of the download to stderr
    """
776
777
778
    weights = EfficientNet_B5_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b5", width_mult=1.6, depth_mult=2.2)
779
    return _efficientnet(
780
        inverted_residual_setting,
781
        0.4,
782
        last_channel,
783
        weights,
784
785
786
787
        progress,
        norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01),
        **kwargs,
    )
788
789


790
791
792
793
@handle_legacy_interface(weights=("pretrained", EfficientNet_B6_Weights.IMAGENET1K_V1))
def efficientnet_b6(
    *, weights: Optional[EfficientNet_B6_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
794
795
796
797
798
    """
    Constructs a EfficientNet B6 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
799
        weights (EfficientNet_B6_Weights, optional): The pretrained weights for the model
800
801
        progress (bool): If True, displays a progress bar of the download to stderr
    """
802
803
804
    weights = EfficientNet_B6_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b6", width_mult=1.8, depth_mult=2.6)
805
    return _efficientnet(
806
        inverted_residual_setting,
807
        0.5,
808
        last_channel,
809
        weights,
810
811
812
813
        progress,
        norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01),
        **kwargs,
    )
814
815


816
817
818
819
@handle_legacy_interface(weights=("pretrained", EfficientNet_B7_Weights.IMAGENET1K_V1))
def efficientnet_b7(
    *, weights: Optional[EfficientNet_B7_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
820
821
822
823
824
    """
    Constructs a EfficientNet B7 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
825
        weights (EfficientNet_B7_Weights, optional): The pretrained weights for the model
826
827
        progress (bool): If True, displays a progress bar of the download to stderr
    """
828
829
830
    weights = EfficientNet_B7_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b7", width_mult=2.0, depth_mult=3.1)
831
    return _efficientnet(
832
        inverted_residual_setting,
833
        0.5,
834
        last_channel,
835
        weights,
836
837
838
839
        progress,
        norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01),
        **kwargs,
    )
840
841


842
843
844
845
@handle_legacy_interface(weights=("pretrained", EfficientNet_V2_S_Weights.IMAGENET1K_V1))
def efficientnet_v2_s(
    *, weights: Optional[EfficientNet_V2_S_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
846
847
848
849
850
    """
    Constructs an EfficientNetV2-S architecture from
    `"EfficientNetV2: Smaller Models and Faster Training" <https://arxiv.org/abs/2104.00298>`_.

    Args:
851
        weights (EfficientNet_V2_S_Weights, optional): The pretrained weights for the model
852
853
        progress (bool): If True, displays a progress bar of the download to stderr
    """
854
855
856
    weights = EfficientNet_V2_S_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_v2_s")
857
858
859
860
    return _efficientnet(
        inverted_residual_setting,
        0.2,
        last_channel,
861
        weights,
862
863
864
865
866
867
        progress,
        norm_layer=partial(nn.BatchNorm2d, eps=1e-03),
        **kwargs,
    )


868
869
870
871
@handle_legacy_interface(weights=("pretrained", EfficientNet_V2_M_Weights.IMAGENET1K_V1))
def efficientnet_v2_m(
    *, weights: Optional[EfficientNet_V2_M_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
872
873
874
875
876
    """
    Constructs an EfficientNetV2-M architecture from
    `"EfficientNetV2: Smaller Models and Faster Training" <https://arxiv.org/abs/2104.00298>`_.

    Args:
877
        weights (EfficientNet_V2_M_Weights, optional): The pretrained weights for the model
878
879
        progress (bool): If True, displays a progress bar of the download to stderr
    """
880
881
882
    weights = EfficientNet_V2_M_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_v2_m")
883
884
885
886
    return _efficientnet(
        inverted_residual_setting,
        0.3,
        last_channel,
887
        weights,
888
889
890
891
892
893
        progress,
        norm_layer=partial(nn.BatchNorm2d, eps=1e-03),
        **kwargs,
    )


894
895
896
897
@handle_legacy_interface(weights=("pretrained", EfficientNet_V2_L_Weights.IMAGENET1K_V1))
def efficientnet_v2_l(
    *, weights: Optional[EfficientNet_V2_L_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
898
899
900
901
902
    """
    Constructs an EfficientNetV2-L architecture from
    `"EfficientNetV2: Smaller Models and Faster Training" <https://arxiv.org/abs/2104.00298>`_.

    Args:
903
        weights (EfficientNet_V2_L_Weights, optional): The pretrained weights for the model
904
905
        progress (bool): If True, displays a progress bar of the download to stderr
    """
906
907
908
    weights = EfficientNet_V2_L_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_v2_l")
909
910
911
912
    return _efficientnet(
        inverted_residual_setting,
        0.4,
        last_channel,
913
        weights,
914
915
916
917
        progress,
        norm_layer=partial(nn.BatchNorm2d, eps=1e-03),
        **kwargs,
    )