efficientnet.py 15.8 KB
Newer Older
1
2
3
4
5
import copy
import math
from functools import partial
from typing import Any, Callable, List, Optional, Sequence

6
7
8
9
import torch
from torch import nn, Tensor
from torchvision.ops import StochasticDepth

10
from .._internally_replaced_utils import load_state_dict_from_url
11
12
from ..ops.misc import ConvNormActivation, SqueezeExcitation
from ._utils import _make_divisible
13
14


15
16
17
18
19
20
21
22
23
24
25
__all__ = [
    "EfficientNet",
    "efficientnet_b0",
    "efficientnet_b1",
    "efficientnet_b2",
    "efficientnet_b3",
    "efficientnet_b4",
    "efficientnet_b5",
    "efficientnet_b6",
    "efficientnet_b7",
]
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43


model_urls = {
    # Weights ported from https://github.com/rwightman/pytorch-image-models/
    "efficientnet_b0": "https://download.pytorch.org/models/efficientnet_b0_rwightman-3dd342df.pth",
    "efficientnet_b1": "https://download.pytorch.org/models/efficientnet_b1_rwightman-533bc792.pth",
    "efficientnet_b2": "https://download.pytorch.org/models/efficientnet_b2_rwightman-bcdf34b7.pth",
    "efficientnet_b3": "https://download.pytorch.org/models/efficientnet_b3_rwightman-cf984f9c.pth",
    "efficientnet_b4": "https://download.pytorch.org/models/efficientnet_b4_rwightman-7eb33cd5.pth",
    # Weights ported from https://github.com/lukemelas/EfficientNet-PyTorch/
    "efficientnet_b5": "https://download.pytorch.org/models/efficientnet_b5_lukemelas-b6417697.pth",
    "efficientnet_b6": "https://download.pytorch.org/models/efficientnet_b6_lukemelas-c76e70fd.pth",
    "efficientnet_b7": "https://download.pytorch.org/models/efficientnet_b7_lukemelas-dcc49843.pth",
}


class MBConvConfig:
    # Stores information listed at Table 1 of the EfficientNet paper
44
45
46
47
48
49
50
51
52
53
54
    def __init__(
        self,
        expand_ratio: float,
        kernel: int,
        stride: int,
        input_channels: int,
        out_channels: int,
        num_layers: int,
        width_mult: float,
        depth_mult: float,
    ) -> None:
55
56
57
58
59
60
61
62
        self.expand_ratio = expand_ratio
        self.kernel = kernel
        self.stride = stride
        self.input_channels = self.adjust_channels(input_channels, width_mult)
        self.out_channels = self.adjust_channels(out_channels, width_mult)
        self.num_layers = self.adjust_depth(num_layers, depth_mult)

    def __repr__(self) -> str:
63
64
65
66
67
68
69
70
        s = self.__class__.__name__ + "("
        s += "expand_ratio={expand_ratio}"
        s += ", kernel={kernel}"
        s += ", stride={stride}"
        s += ", input_channels={input_channels}"
        s += ", out_channels={out_channels}"
        s += ", num_layers={num_layers}"
        s += ")"
71
72
73
74
75
76
77
78
79
80
81
82
        return s.format(**self.__dict__)

    @staticmethod
    def adjust_channels(channels: int, width_mult: float, min_value: Optional[int] = None) -> int:
        return _make_divisible(channels * width_mult, 8, min_value)

    @staticmethod
    def adjust_depth(num_layers: int, depth_mult: float):
        return int(math.ceil(num_layers * depth_mult))


class MBConv(nn.Module):
83
84
85
86
87
88
89
    def __init__(
        self,
        cnf: MBConvConfig,
        stochastic_depth_prob: float,
        norm_layer: Callable[..., nn.Module],
        se_layer: Callable[..., nn.Module] = SqueezeExcitation,
    ) -> None:
90
91
92
        super().__init__()

        if not (1 <= cnf.stride <= 2):
93
            raise ValueError("illegal stride value")
94
95
96
97
98
99
100
101
102

        self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels

        layers: List[nn.Module] = []
        activation_layer = nn.SiLU

        # expand
        expanded_channels = cnf.adjust_channels(cnf.input_channels, cnf.expand_ratio)
        if expanded_channels != cnf.input_channels:
103
104
105
106
107
108
109
110
111
            layers.append(
                ConvNormActivation(
                    cnf.input_channels,
                    expanded_channels,
                    kernel_size=1,
                    norm_layer=norm_layer,
                    activation_layer=activation_layer,
                )
            )
112
113

        # depthwise
114
115
116
117
118
119
120
121
122
123
124
        layers.append(
            ConvNormActivation(
                expanded_channels,
                expanded_channels,
                kernel_size=cnf.kernel,
                stride=cnf.stride,
                groups=expanded_channels,
                norm_layer=norm_layer,
                activation_layer=activation_layer,
            )
        )
125
126
127

        # squeeze and excitation
        squeeze_channels = max(1, cnf.input_channels // 4)
128
        layers.append(se_layer(expanded_channels, squeeze_channels, activation=partial(nn.SiLU, inplace=True)))
129
130

        # project
131
132
133
134
135
        layers.append(
            ConvNormActivation(
                expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=None
            )
        )
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

        self.block = nn.Sequential(*layers)
        self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")
        self.out_channels = cnf.out_channels

    def forward(self, input: Tensor) -> Tensor:
        result = self.block(input)
        if self.use_res_connect:
            result = self.stochastic_depth(result)
            result += input
        return result


class EfficientNet(nn.Module):
    def __init__(
151
152
153
154
155
156
157
158
        self,
        inverted_residual_setting: List[MBConvConfig],
        dropout: float,
        stochastic_depth_prob: float = 0.2,
        num_classes: int = 1000,
        block: Optional[Callable[..., nn.Module]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        **kwargs: Any,
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    ) -> None:
        """
        EfficientNet main class

        Args:
            inverted_residual_setting (List[MBConvConfig]): Network structure
            dropout (float): The droupout probability
            stochastic_depth_prob (float): The stochastic depth probability
            num_classes (int): Number of classes
            block (Optional[Callable[..., nn.Module]]): Module specifying inverted residual building block for mobilenet
            norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
        """
        super().__init__()

        if not inverted_residual_setting:
            raise ValueError("The inverted_residual_setting should not be empty")
175
176
177
178
        elif not (
            isinstance(inverted_residual_setting, Sequence)
            and all([isinstance(s, MBConvConfig) for s in inverted_residual_setting])
        ):
179
180
181
182
183
184
185
186
187
188
189
190
            raise TypeError("The inverted_residual_setting should be List[MBConvConfig]")

        if block is None:
            block = MBConv

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        layers: List[nn.Module] = []

        # building first layer
        firstconv_output_channels = inverted_residual_setting[0].input_channels
191
192
193
194
195
        layers.append(
            ConvNormActivation(
                3, firstconv_output_channels, kernel_size=3, stride=2, norm_layer=norm_layer, activation_layer=nn.SiLU
            )
        )
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

        # building inverted residual blocks
        total_stage_blocks = sum([cnf.num_layers for cnf in inverted_residual_setting])
        stage_block_id = 0
        for cnf in inverted_residual_setting:
            stage: List[nn.Module] = []
            for _ in range(cnf.num_layers):
                # copy to avoid modifications. shallow copy is enough
                block_cnf = copy.copy(cnf)

                # overwrite info if not the first conv in the stage
                if stage:
                    block_cnf.input_channels = block_cnf.out_channels
                    block_cnf.stride = 1

                # adjust stochastic depth probability based on the depth of the stage block
                sd_prob = stochastic_depth_prob * float(stage_block_id) / total_stage_blocks

                stage.append(block(block_cnf, sd_prob, norm_layer))
                stage_block_id += 1

            layers.append(nn.Sequential(*stage))

        # building last several layers
        lastconv_input_channels = inverted_residual_setting[-1].out_channels
        lastconv_output_channels = 4 * lastconv_input_channels
222
223
224
225
226
227
228
229
230
        layers.append(
            ConvNormActivation(
                lastconv_input_channels,
                lastconv_output_channels,
                kernel_size=1,
                norm_layer=norm_layer,
                activation_layer=nn.SiLU,
            )
        )
231
232
233
234
235
236
237
238
239
240

        self.features = nn.Sequential(*layers)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.classifier = nn.Sequential(
            nn.Dropout(p=dropout, inplace=True),
            nn.Linear(lastconv_output_channels, num_classes),
        )

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
241
                nn.init.kaiming_normal_(m.weight, mode="fan_out")
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                init_range = 1.0 / math.sqrt(m.out_features)
                nn.init.uniform_(m.weight, -init_range, init_range)
                nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        x = self.features(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)

        x = self.classifier(x)

        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


def _efficientnet_conf(width_mult: float, depth_mult: float, **kwargs: Any) -> List[MBConvConfig]:
    bneck_conf = partial(MBConvConfig, width_mult=width_mult, depth_mult=depth_mult)
    inverted_residual_setting = [
        bneck_conf(1, 3, 1, 32, 16, 1),
        bneck_conf(6, 3, 2, 16, 24, 2),
        bneck_conf(6, 5, 2, 24, 40, 2),
        bneck_conf(6, 3, 2, 40, 80, 3),
        bneck_conf(6, 5, 1, 80, 112, 3),
        bneck_conf(6, 5, 2, 112, 192, 4),
        bneck_conf(6, 3, 1, 192, 320, 1),
    ]
    return inverted_residual_setting


280
def _efficientnet(
281
282
283
284
285
    arch: str,
    inverted_residual_setting: List[MBConvConfig],
    dropout: float,
    pretrained: bool,
    progress: bool,
286
    **kwargs: Any,
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
) -> EfficientNet:
    model = EfficientNet(inverted_residual_setting, dropout, **kwargs)
    if pretrained:
        if model_urls.get(arch, None) is None:
            raise ValueError("No checkpoint is available for model type {}".format(arch))
        state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
        model.load_state_dict(state_dict)
    return model


def efficientnet_b0(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
    """
    Constructs a EfficientNet B0 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    inverted_residual_setting = _efficientnet_conf(width_mult=1.0, depth_mult=1.0, **kwargs)
307
    return _efficientnet("efficientnet_b0", inverted_residual_setting, 0.2, pretrained, progress, **kwargs)
308
309
310
311
312
313
314
315
316
317
318
319


def efficientnet_b1(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
    """
    Constructs a EfficientNet B1 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    inverted_residual_setting = _efficientnet_conf(width_mult=1.0, depth_mult=1.1, **kwargs)
320
    return _efficientnet("efficientnet_b1", inverted_residual_setting, 0.2, pretrained, progress, **kwargs)
321
322
323
324
325
326
327
328
329
330
331
332


def efficientnet_b2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
    """
    Constructs a EfficientNet B2 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    inverted_residual_setting = _efficientnet_conf(width_mult=1.1, depth_mult=1.2, **kwargs)
333
    return _efficientnet("efficientnet_b2", inverted_residual_setting, 0.3, pretrained, progress, **kwargs)
334
335
336
337
338
339
340
341
342
343
344
345


def efficientnet_b3(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
    """
    Constructs a EfficientNet B3 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    inverted_residual_setting = _efficientnet_conf(width_mult=1.2, depth_mult=1.4, **kwargs)
346
    return _efficientnet("efficientnet_b3", inverted_residual_setting, 0.3, pretrained, progress, **kwargs)
347
348
349
350
351
352
353
354
355
356
357
358


def efficientnet_b4(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
    """
    Constructs a EfficientNet B4 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    inverted_residual_setting = _efficientnet_conf(width_mult=1.4, depth_mult=1.8, **kwargs)
359
    return _efficientnet("efficientnet_b4", inverted_residual_setting, 0.4, pretrained, progress, **kwargs)
360
361
362
363
364
365
366
367
368
369
370
371


def efficientnet_b5(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
    """
    Constructs a EfficientNet B5 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    inverted_residual_setting = _efficientnet_conf(width_mult=1.6, depth_mult=2.2, **kwargs)
372
    return _efficientnet(
373
374
375
376
377
378
379
380
        "efficientnet_b5",
        inverted_residual_setting,
        0.4,
        pretrained,
        progress,
        norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01),
        **kwargs,
    )
381
382
383
384
385
386
387
388
389
390
391
392


def efficientnet_b6(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
    """
    Constructs a EfficientNet B6 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    inverted_residual_setting = _efficientnet_conf(width_mult=1.8, depth_mult=2.6, **kwargs)
393
    return _efficientnet(
394
395
396
397
398
399
400
401
        "efficientnet_b6",
        inverted_residual_setting,
        0.5,
        pretrained,
        progress,
        norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01),
        **kwargs,
    )
402
403
404
405
406
407
408
409
410
411
412
413


def efficientnet_b7(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
    """
    Constructs a EfficientNet B7 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    inverted_residual_setting = _efficientnet_conf(width_mult=2.0, depth_mult=3.1, **kwargs)
414
    return _efficientnet(
415
416
417
418
419
420
421
422
        "efficientnet_b7",
        inverted_residual_setting,
        0.5,
        pretrained,
        progress,
        norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01),
        **kwargs,
    )