utils.py 8.92 KB
Newer Older
1
import datetime
2
3
import errno
import os
4
import time
5
6
from collections import defaultdict, deque

7
8
9
10
import torch
import torch.distributed as dist


11
class SmoothedValue:
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
33
        t = reduce_across_processes([self.count, self.total])
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
62
63
            median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
        )
64
65


66
class ConfusionMatrix:
67
68
69
70
71
72
73
74
    def __init__(self, num_classes):
        self.num_classes = num_classes
        self.mat = None

    def update(self, a, b):
        n = self.num_classes
        if self.mat is None:
            self.mat = torch.zeros((n, n), dtype=torch.int64, device=a.device)
75
        with torch.inference_mode():
76
77
            k = (a >= 0) & (a < n)
            inds = n * a[k].to(torch.int64) + b[k]
78
            self.mat += torch.bincount(inds, minlength=n**2).reshape(n, n)
79
80
81
82
83
84
85
86
87
88
89
90

    def reset(self):
        self.mat.zero_()

    def compute(self):
        h = self.mat.float()
        acc_global = torch.diag(h).sum() / h.sum()
        acc = torch.diag(h) / h.sum(1)
        iu = torch.diag(h) / (h.sum(1) + h.sum(0) - torch.diag(h))
        return acc_global, acc, iu

    def reduce_from_all_processes(self):
91
        reduce_across_processes(self.mat)
92
93
94

    def __str__(self):
        acc_global, acc, iu = self.compute()
95
        return ("global correct: {:.1f}\naverage row correct: {}\nIoU: {}\nmean IoU: {:.1f}").format(
96
            acc_global.item() * 100,
97
98
            [f"{i:.1f}" for i in (acc * 100).tolist()],
            [f"{i:.1f}" for i in (iu * 100).tolist()],
99
100
            iu.mean().item() * 100,
        )
101
102


103
class MetricLogger:
104
105
106
107
108
109
110
111
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
112
113
114
115
            if not isinstance(v, (float, int)):
                raise TypeError(
                    f"This method expects the value of the input arguments to be of type float or int, instead  got {type(v)}"
                )
116
117
118
119
120
121
122
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
123
        raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")
124
125
126
127

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
128
            loss_str.append(f"{name}: {str(meter)}")
129
130
131
132
133
134
135
136
137
138
139
140
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None):
        i = 0
        if not header:
141
            header = ""
142
143
        start_time = time.time()
        end = time.time()
144
145
146
        iter_time = SmoothedValue(fmt="{avg:.4f}")
        data_time = SmoothedValue(fmt="{avg:.4f}")
        space_fmt = ":" + str(len(str(len(iterable)))) + "d"
147
        if torch.cuda.is_available():
148
149
150
151
152
153
154
155
156
157
158
            log_msg = self.delimiter.join(
                [
                    header,
                    "[{0" + space_fmt + "}/{1}]",
                    "eta: {eta}",
                    "{meters}",
                    "time: {time}",
                    "data: {data}",
                    "max mem: {memory:.0f}",
                ]
            )
159
        else:
160
161
162
            log_msg = self.delimiter.join(
                [header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
            )
163
164
165
166
167
168
169
170
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % print_freq == 0:
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
171
                if torch.cuda.is_available():
172
173
174
175
176
177
178
179
180
181
182
                    print(
                        log_msg.format(
                            i,
                            len(iterable),
                            eta=eta_string,
                            meters=str(self),
                            time=str(iter_time),
                            data=str(data_time),
                            memory=torch.cuda.max_memory_allocated() / MB,
                        )
                    )
183
                else:
184
185
186
187
188
                    print(
                        log_msg.format(
                            i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
                        )
                    )
189
190
191
192
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
193
        print(f"{header} Total time: {total_time_str}")
194
195
196
197
198
199
200


def cat_list(images, fill_value=0):
    max_size = tuple(max(s) for s in zip(*[img.shape for img in images]))
    batch_shape = (len(images),) + max_size
    batched_imgs = images[0].new(*batch_shape).fill_(fill_value)
    for img, pad_img in zip(images, batched_imgs):
201
        pad_img[..., : img.shape[-2], : img.shape[-1]].copy_(img)
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    return batched_imgs


def collate_fn(batch):
    images, targets = list(zip(*batch))
    batched_imgs = cat_list(images, fill_value=0)
    batched_targets = cat_list(targets, fill_value=255)
    return batched_imgs, batched_targets


def mkdir(path):
    try:
        os.makedirs(path)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise


def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    import builtins as __builtin__
225

226
227
228
    builtin_print = __builtin__.print

    def print(*args, **kwargs):
229
        force = kwargs.pop("force", False)
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        if is_master or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)


def init_distributed_mode(args):
266
    if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
267
        args.rank = int(os.environ["RANK"])
268
269
270
271
        args.world_size = int(os.environ["WORLD_SIZE"])
        args.gpu = int(os.environ["LOCAL_RANK"])
    elif "SLURM_PROCID" in os.environ:
        args.rank = int(os.environ["SLURM_PROCID"])
272
273
274
275
        args.gpu = args.rank % torch.cuda.device_count()
    elif hasattr(args, "rank"):
        pass
    else:
276
        print("Not using distributed mode")
277
278
279
280
281
282
        args.distributed = False
        return

    args.distributed = True

    torch.cuda.set_device(args.gpu)
283
    args.dist_backend = "nccl"
284
    print(f"| distributed init (rank {args.rank}): {args.dist_url}", flush=True)
285
286
287
    torch.distributed.init_process_group(
        backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
    )
288
    torch.distributed.barrier()
289
    setup_for_distributed(args.rank == 0)
290
291
292
293
294
295
296
297
298
299
300


def reduce_across_processes(val):
    if not is_dist_avail_and_initialized():
        # nothing to sync, but we still convert to tensor for consistency with the distributed case.
        return torch.tensor(val)

    t = torch.tensor(val, device="cuda")
    dist.barrier()
    dist.all_reduce(t)
    return t