utils.py 8.93 KB
Newer Older
1
import datetime
2
3
import errno
import os
4
import time
5
6
from collections import defaultdict, deque

7
8
9
10
import torch
import torch.distributed as dist


11
class SmoothedValue:
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
35
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
66
67
            median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
        )
68
69


70
class ConfusionMatrix:
71
72
73
74
75
76
77
78
    def __init__(self, num_classes):
        self.num_classes = num_classes
        self.mat = None

    def update(self, a, b):
        n = self.num_classes
        if self.mat is None:
            self.mat = torch.zeros((n, n), dtype=torch.int64, device=a.device)
79
        with torch.inference_mode():
80
81
            k = (a >= 0) & (a < n)
            inds = n * a[k].to(torch.int64) + b[k]
82
            self.mat += torch.bincount(inds, minlength=n ** 2).reshape(n, n)
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

    def reset(self):
        self.mat.zero_()

    def compute(self):
        h = self.mat.float()
        acc_global = torch.diag(h).sum() / h.sum()
        acc = torch.diag(h) / h.sum(1)
        iu = torch.diag(h) / (h.sum(1) + h.sum(0) - torch.diag(h))
        return acc_global, acc, iu

    def reduce_from_all_processes(self):
        if not torch.distributed.is_available():
            return
        if not torch.distributed.is_initialized():
            return
        torch.distributed.barrier()
        torch.distributed.all_reduce(self.mat)

    def __str__(self):
        acc_global, acc, iu = self.compute()
104
        return ("global correct: {:.1f}\naverage row correct: {}\nIoU: {}\nmean IoU: {:.1f}").format(
105
            acc_global.item() * 100,
106
107
            [f"{i:.1f}" for i in (acc * 100).tolist()],
            [f"{i:.1f}" for i in (iu * 100).tolist()],
108
109
            iu.mean().item() * 100,
        )
110
111


112
class MetricLogger:
113
114
115
116
117
118
119
120
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
121
122
123
124
            if not isinstance(v, (float, int)):
                raise TypeError(
                    f"This method expects the value of the input arguments to be of type float or int, instead  got {type(v)}"
                )
125
126
127
128
129
130
131
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
132
        raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")
133
134
135
136

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
137
            loss_str.append(f"{name}: {str(meter)}")
138
139
140
141
142
143
144
145
146
147
148
149
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None):
        i = 0
        if not header:
150
            header = ""
151
152
        start_time = time.time()
        end = time.time()
153
154
155
        iter_time = SmoothedValue(fmt="{avg:.4f}")
        data_time = SmoothedValue(fmt="{avg:.4f}")
        space_fmt = ":" + str(len(str(len(iterable)))) + "d"
156
        if torch.cuda.is_available():
157
158
159
160
161
162
163
164
165
166
167
            log_msg = self.delimiter.join(
                [
                    header,
                    "[{0" + space_fmt + "}/{1}]",
                    "eta: {eta}",
                    "{meters}",
                    "time: {time}",
                    "data: {data}",
                    "max mem: {memory:.0f}",
                ]
            )
168
        else:
169
170
171
            log_msg = self.delimiter.join(
                [header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
            )
172
173
174
175
176
177
178
179
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % print_freq == 0:
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
180
                if torch.cuda.is_available():
181
182
183
184
185
186
187
188
189
190
191
                    print(
                        log_msg.format(
                            i,
                            len(iterable),
                            eta=eta_string,
                            meters=str(self),
                            time=str(iter_time),
                            data=str(data_time),
                            memory=torch.cuda.max_memory_allocated() / MB,
                        )
                    )
192
                else:
193
194
195
196
197
                    print(
                        log_msg.format(
                            i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
                        )
                    )
198
199
200
201
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
202
        print(f"{header} Total time: {total_time_str}")
203
204
205
206
207
208
209


def cat_list(images, fill_value=0):
    max_size = tuple(max(s) for s in zip(*[img.shape for img in images]))
    batch_shape = (len(images),) + max_size
    batched_imgs = images[0].new(*batch_shape).fill_(fill_value)
    for img, pad_img in zip(images, batched_imgs):
210
        pad_img[..., : img.shape[-2], : img.shape[-1]].copy_(img)
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    return batched_imgs


def collate_fn(batch):
    images, targets = list(zip(*batch))
    batched_imgs = cat_list(images, fill_value=0)
    batched_targets = cat_list(targets, fill_value=255)
    return batched_imgs, batched_targets


def mkdir(path):
    try:
        os.makedirs(path)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise


def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    import builtins as __builtin__
234

235
236
237
    builtin_print = __builtin__.print

    def print(*args, **kwargs):
238
        force = kwargs.pop("force", False)
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        if is_master or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)


def init_distributed_mode(args):
275
    if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
276
        args.rank = int(os.environ["RANK"])
277
278
279
280
        args.world_size = int(os.environ["WORLD_SIZE"])
        args.gpu = int(os.environ["LOCAL_RANK"])
    elif "SLURM_PROCID" in os.environ:
        args.rank = int(os.environ["SLURM_PROCID"])
281
282
283
284
        args.gpu = args.rank % torch.cuda.device_count()
    elif hasattr(args, "rank"):
        pass
    else:
285
        print("Not using distributed mode")
286
287
288
289
290
291
        args.distributed = False
        return

    args.distributed = True

    torch.cuda.set_device(args.gpu)
292
    args.dist_backend = "nccl"
293
    print(f"| distributed init (rank {args.rank}): {args.dist_url}", flush=True)
294
295
296
    torch.distributed.init_process_group(
        backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
    )
297
    torch.distributed.barrier()
298
    setup_for_distributed(args.rank == 0)