test_datasets.py 10.3 KB
Newer Older
1
import os
2
import unittest
3
import mock
4
import numpy as np
5
import PIL
6
from PIL import Image
7
from torch._utils_internal import get_file_path_2
8
9
import torchvision
from common_utils import get_tmp_dir
Philip Meier's avatar
Philip Meier committed
10
11
from fakedata_generation import mnist_root, cifar_root, imagenet_root, \
    cityscapes_root, svhn_root
12
13


14
15
16
17
18
19
20
try:
    import scipy
    HAS_SCIPY = True
except ImportError:
    HAS_SCIPY = False


Philip Meier's avatar
Philip Meier committed
21
class Tester(unittest.TestCase):
22
23
24
25
26
27
    def generic_classification_dataset_test(self, dataset, num_images=1):
        self.assertEqual(len(dataset), num_images)
        img, target = dataset[0]
        self.assertTrue(isinstance(img, PIL.Image.Image))
        self.assertTrue(isinstance(target, int))

28
29
30
31
32
33
    def generic_segmentation_dataset_test(self, dataset, num_images=1):
        self.assertEqual(len(dataset), num_images)
        img, target = dataset[0]
        self.assertTrue(isinstance(img, PIL.Image.Image))
        self.assertTrue(isinstance(target, PIL.Image.Image))

34
    def test_imagefolder(self):
35
36
37
38
        # TODO: create the fake data on-the-fly
        FAKEDATA_DIR = get_file_path_2(
            os.path.dirname(os.path.abspath(__file__)), 'assets', 'fakedata')

39
        with get_tmp_dir(src=os.path.join(FAKEDATA_DIR, 'imagefolder')) as root:
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
            classes = sorted(['a', 'b'])
            class_a_image_files = [os.path.join(root, 'a', file)
                                   for file in ('a1.png', 'a2.png', 'a3.png')]
            class_b_image_files = [os.path.join(root, 'b', file)
                                   for file in ('b1.png', 'b2.png', 'b3.png', 'b4.png')]
            dataset = torchvision.datasets.ImageFolder(root, loader=lambda x: x)

            # test if all classes are present
            self.assertEqual(classes, sorted(dataset.classes))

            # test if combination of classes and class_to_index functions correctly
            for cls in classes:
                self.assertEqual(cls, dataset.classes[dataset.class_to_idx[cls]])

            # test if all images were detected correctly
            class_a_idx = dataset.class_to_idx['a']
            class_b_idx = dataset.class_to_idx['b']
            imgs_a = [(img_file, class_a_idx) for img_file in class_a_image_files]
            imgs_b = [(img_file, class_b_idx) for img_file in class_b_image_files]
            imgs = sorted(imgs_a + imgs_b)
            self.assertEqual(imgs, dataset.imgs)

            # test if the datasets outputs all images correctly
            outputs = sorted([dataset[i] for i in range(len(dataset))])
            self.assertEqual(imgs, outputs)

            # redo all tests with specified valid image files
            dataset = torchvision.datasets.ImageFolder(root, loader=lambda x: x,
                                                       is_valid_file=lambda x: '3' in x)
            self.assertEqual(classes, sorted(dataset.classes))

            class_a_idx = dataset.class_to_idx['a']
            class_b_idx = dataset.class_to_idx['b']
            imgs_a = [(img_file, class_a_idx) for img_file in class_a_image_files
                      if '3' in img_file]
            imgs_b = [(img_file, class_b_idx) for img_file in class_b_image_files
                      if '3' in img_file]
            imgs = sorted(imgs_a + imgs_b)
            self.assertEqual(imgs, dataset.imgs)

            outputs = sorted([dataset[i] for i in range(len(dataset))])
            self.assertEqual(imgs, outputs)

83
84
85
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_mnist(self, mock_download_extract):
        num_examples = 30
86
        with mnist_root(num_examples, "MNIST") as root:
87
            dataset = torchvision.datasets.MNIST(root, download=True)
88
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
89
            img, target = dataset[0]
90
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
91

92
93
94
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_kmnist(self, mock_download_extract):
        num_examples = 30
95
        with mnist_root(num_examples, "KMNIST") as root:
96
            dataset = torchvision.datasets.KMNIST(root, download=True)
97
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
98
            img, target = dataset[0]
99
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
100

101
102
103
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_fashionmnist(self, mock_download_extract):
        num_examples = 30
104
        with mnist_root(num_examples, "FashionMNIST") as root:
105
            dataset = torchvision.datasets.FashionMNIST(root, download=True)
106
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
107
            img, target = dataset[0]
108
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
109
110

    @mock.patch('torchvision.datasets.utils.download_url')
111
    @unittest.skipIf(not HAS_SCIPY, "scipy unavailable")
112
    def test_imagenet(self, mock_download):
113
        with imagenet_root() as root:
114
            dataset = torchvision.datasets.ImageNet(root, split='train', download=True)
115
            self.generic_classification_dataset_test(dataset)
116
117

            dataset = torchvision.datasets.ImageNet(root, split='val', download=True)
118
            self.generic_classification_dataset_test(dataset)
119

Philip Meier's avatar
Philip Meier committed
120
121
122
123
124
125
126
    @mock.patch('torchvision.datasets.cifar.check_integrity')
    @mock.patch('torchvision.datasets.cifar.CIFAR10._check_integrity')
    def test_cifar10(self, mock_ext_check, mock_int_check):
        mock_ext_check.return_value = True
        mock_int_check.return_value = True
        with cifar_root('CIFAR10') as root:
            dataset = torchvision.datasets.CIFAR10(root, train=True, download=True)
127
            self.generic_classification_dataset_test(dataset, num_images=5)
Philip Meier's avatar
Philip Meier committed
128
            img, target = dataset[0]
129
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
130
131

            dataset = torchvision.datasets.CIFAR10(root, train=False, download=True)
132
            self.generic_classification_dataset_test(dataset)
Philip Meier's avatar
Philip Meier committed
133
            img, target = dataset[0]
134
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
135
136
137
138
139
140
141
142

    @mock.patch('torchvision.datasets.cifar.check_integrity')
    @mock.patch('torchvision.datasets.cifar.CIFAR10._check_integrity')
    def test_cifar100(self, mock_ext_check, mock_int_check):
        mock_ext_check.return_value = True
        mock_int_check.return_value = True
        with cifar_root('CIFAR100') as root:
            dataset = torchvision.datasets.CIFAR100(root, train=True, download=True)
143
            self.generic_classification_dataset_test(dataset)
Philip Meier's avatar
Philip Meier committed
144
            img, target = dataset[0]
145
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
146
147

            dataset = torchvision.datasets.CIFAR100(root, train=False, download=True)
148
            self.generic_classification_dataset_test(dataset)
Philip Meier's avatar
Philip Meier committed
149
            img, target = dataset[0]
150
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    def test_cityscapes(self):
        with cityscapes_root() as root:

            for mode in ['coarse', 'fine']:

                if mode == 'coarse':
                    splits = ['train', 'train_extra', 'val']
                else:
                    splits = ['train', 'val', 'test']

                for split in splits:
                    for target_type in ['semantic', 'instance']:
                        dataset = torchvision.datasets.Cityscapes(root, split=split,
                                                                  target_type=target_type, mode=mode)
                        self.generic_segmentation_dataset_test(dataset, num_images=2)

                    color_dataset = torchvision.datasets.Cityscapes(root, split=split,
                                                                    target_type='color', mode=mode)
                    color_img, color_target = color_dataset[0]
                    self.assertTrue(isinstance(color_img, PIL.Image.Image))
                    self.assertTrue(np.array(color_target).shape[2] == 4)

                    polygon_dataset = torchvision.datasets.Cityscapes(root, split=split,
                                                                      target_type='polygon', mode=mode)
                    polygon_img, polygon_target = polygon_dataset[0]
                    self.assertTrue(isinstance(polygon_img, PIL.Image.Image))
                    self.assertTrue(isinstance(polygon_target, dict))
                    self.assertTrue(isinstance(polygon_target['imgHeight'], int))
                    self.assertTrue(isinstance(polygon_target['objects'], list))

                    # Test multiple target types
                    targets_combo = ['semantic', 'polygon', 'color']
                    multiple_types_dataset = torchvision.datasets.Cityscapes(root, split=split,
                                                                             target_type=targets_combo,
                                                                             mode=mode)
                    output = multiple_types_dataset[0]
                    self.assertTrue(isinstance(output, tuple))
                    self.assertTrue(len(output) == 2)
                    self.assertTrue(isinstance(output[0], PIL.Image.Image))
                    self.assertTrue(isinstance(output[1], tuple))
                    self.assertTrue(len(output[1]) == 3)
                    self.assertTrue(isinstance(output[1][0], PIL.Image.Image))  # semantic
                    self.assertTrue(isinstance(output[1][1], dict))  # polygon
                    self.assertTrue(isinstance(output[1][2], PIL.Image.Image))  # color

Philip Meier's avatar
Philip Meier committed
197
    @mock.patch('torchvision.datasets.SVHN._check_integrity')
198
    @unittest.skipIf(not HAS_SCIPY, "scipy unavailable")
Philip Meier's avatar
Philip Meier committed
199
200
201
202
203
204
205
206
207
208
209
210
    def test_svhn(self, mock_check):
        mock_check.return_value = True
        with svhn_root() as root:
            dataset = torchvision.datasets.SVHN(root, split="train")
            self.generic_classification_dataset_test(dataset, num_images=2)

            dataset = torchvision.datasets.SVHN(root, split="test")
            self.generic_classification_dataset_test(dataset, num_images=2)

            dataset = torchvision.datasets.SVHN(root, split="extra")
            self.generic_classification_dataset_test(dataset, num_images=2)

211
212
213

if __name__ == '__main__':
    unittest.main()