"vscode:/vscode.git/clone" did not exist on "a25d8256d7f67bbd16b080091811785b6d008f96"
transforms.py 6.72 KB
Newer Older
1
from __future__ import division
soumith's avatar
soumith committed
2
3
4
import torch
import math
import random
5
from PIL import Image, ImageOps
6
import numpy as np
7
import numbers
Soumith Chintala's avatar
Soumith Chintala committed
8
import types
soumith's avatar
soumith committed
9
10

class Compose(object):
11
12
13
14
15
16
17
    """ Composes several transforms together.
    For example:
    >>> transforms.Compose([
    >>>     transforms.CenterCrop(10),
    >>>     transforms.ToTensor(),
    >>>  ])
    """
soumith's avatar
soumith committed
18
19
20
21
22
23
24
25
26
27
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img


class ToTensor(object):
28
29
    """ Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255]
    to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """
soumith's avatar
soumith committed
30
    def __call__(self, pic):
31
32
33
34
35
36
        if isinstance(pic, np.ndarray):
            # handle numpy array
            img = torch.from_numpy(pic)
        else:
            # handle PIL Image
            img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
Soumith Chintala's avatar
Soumith Chintala committed
37
38
            img = img.view(pic.size[1], pic.size[0], 3)
            # put it from HWC to CHW format
39
            # yikes, this transpose takes 80% of the loading time/CPU
Soumith Chintala's avatar
Soumith Chintala committed
40
            img = img.transpose(0, 1).transpose(0, 2).contiguous()
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
        return img.float().div(255)

class ToPILImage(object):
    """ Converts a torch.*Tensor of range [0, 1] and shape C x H x W 
    or numpy ndarray of dtype=uint8, range[0, 255] and shape H x W x C
    to a PIL.Image of range [0, 255]
    """
    def __call__(self, pic):
        if isinstance(pic, np.ndarray):
            # handle numpy array
            img = Image.fromarray(pic)
        else:
            npimg = pic.mul(255).byte().numpy()
            npimg = np.transpose(npimg, (1,2,0))
            img = Image.fromarray(npimg)
        return img
soumith's avatar
soumith committed
57
58

class Normalize(object):
59
60
61
62
    """ Given mean: (R, G, B) and std: (R, G, B),
    will normalize each channel of the torch.*Tensor, i.e.
    channel = (channel - mean) / std
    """
soumith's avatar
soumith committed
63
64
65
66
67
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, tensor):
68
        # TODO: make efficient
soumith's avatar
soumith committed
69
70
71
72
73
74
        for t, m, s in zip(tensor, self.mean, self.std):
            t.sub_(m).div_(s)
        return tensor


class Scale(object):
75
76
77
78
79
80
81
    """ Rescales the input PIL.Image to the given 'size'.
    'size' will be the size of the smaller edge.
    For example, if height > width, then image will be
    rescaled to (size * height / width, size)
    size: size of the smaller edge
    interpolation: Default: PIL.Image.BILINEAR
    """
soumith's avatar
soumith committed
82
83
84
85
86
87
88
89
90
    def __init__(self, size, interpolation=Image.BILINEAR):
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        w, h = img.size
        if (w <= h and w == self.size) or (h <= w and h == self.size):
            return img
        if w < h:
91
92
93
            ow = self.size
            oh = int(self.size * h / w)
            return img.resize((ow, oh), self.interpolation)
soumith's avatar
soumith committed
94
        else:
95
96
97
            oh = self.size
            ow = int(self.size * w / h)
            return img.resize((ow, oh), self.interpolation)
soumith's avatar
soumith committed
98
99
100


class CenterCrop(object):
101
102
103
104
    """Crops the given PIL.Image at the center to have a region of
    the given size. size can be a tuple (target_height, target_width)
    or an integer, in which case the target will be of a square shape (size, size)
    """
soumith's avatar
soumith committed
105
    def __init__(self, size):
106
107
108
109
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
soumith's avatar
soumith committed
110
111
112

    def __call__(self, img):
        w, h = img.size
113
114
115
116
        th, tw = self.size
        x1 = int(round((w - tw) / 2))
        y1 = int(round((h - th) / 2))
        return img.crop((x1, y1, x1 + tw, y1 + th))
soumith's avatar
soumith committed
117
118


119
120
121
122
123
124
125
126
127
128
129
class Pad(object):
    """Pads the given PIL.Image on all sides with the given "pad" value"""
    def __init__(self, padding, fill=0):
        assert isinstance(padding, numbers.Number)
        assert isinstance(fill, numbers.Number)
        self.padding = padding
        self.fill = fill

    def __call__(self, img):
        return ImageOps.expand(img, border=self.padding, fill=self.fill)

Soumith Chintala's avatar
Soumith Chintala committed
130
131
132
133
134
135
136
137
138
class Lambda(object):
    """Applies a lambda as a transform"""
    def __init__(self, lambd):
        assert type(lambd) is types.LambdaType
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

139

soumith's avatar
soumith committed
140
class RandomCrop(object):
141
142
143
144
    """Crops the given PIL.Image at a random location to have a region of
    the given size. size can be a tuple (target_height, target_width)
    or an integer, in which case the target will be of a square shape (size, size)
    """
soumith's avatar
soumith committed
145
    def __init__(self, size, padding=0):
146
147
148
149
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
soumith's avatar
soumith committed
150
151
152
153
        self.padding = padding

    def __call__(self, img):
        if self.padding > 0:
154
            img = ImageOps.expand(img, border=self.padding, fill=0)
soumith's avatar
soumith committed
155
156

        w, h = img.size
157
158
        th, tw = self.size
        if w == tw and h == th:
soumith's avatar
soumith committed
159
160
            return img

161
162
163
        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th))
soumith's avatar
soumith committed
164
165
166


class RandomHorizontalFlip(object):
167
168
    """Randomly horizontally flips the given PIL.Image with a probability of 0.5
    """
soumith's avatar
soumith committed
169
170
171
172
173
174
175
    def __call__(self, img):
        if random.random() < 0.5:
            return img.transpose(Image.FLIP_LEFT_RIGHT)
        return img


class RandomSizedCrop(object):
176
177
178
179
180
181
    """Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size
    and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
    This is popularly used to train the Inception networks
    size: size of the smaller edge
    interpolation: Default: PIL.Image.BILINEAR
    """
soumith's avatar
soumith committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    def __init__(self, size, interpolation=Image.BILINEAR):
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        for attempt in range(10):
            area = img.size[0] * img.size[1]
            target_area = random.uniform(0.08, 1.0) * area
            aspect_ratio = random.uniform(3 / 4, 4 / 3)

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                w, h = h, w

            if w <= img.size[0] and h <= img.size[1]:
                x1 = random.randint(0, img.size[0] - w)
                y1 = random.randint(0, img.size[1] - h)

                img = img.crop((x1, y1, x1 + w, y1 + h))
                assert(img.size == (w, h))

                return img.resize((self.size, self.size), self.interpolation)

        # Fallback
        scale = Scale(self.size, interpolation=self.interpolation)
        crop = CenterCrop(self.size)
        return crop(scale(img))