"vscode:/vscode.git/clone" did not exist on "01f98730489e50715bf5fab27e5db96273cabd01"
efficientnet.py 41.9 KB
Newer Older
1
2
import copy
import math
3
4
import warnings
from dataclasses import dataclass
5
from functools import partial
6
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
7

8
9
10
11
import torch
from torch import nn, Tensor
from torchvision.ops import StochasticDepth

12
from ..ops.misc import Conv2dNormActivation, SqueezeExcitation
13
from ..transforms._presets import ImageClassification, InterpolationMode
14
from ..utils import _log_api_usage_once
15
from ._api import Weights, WeightsEnum
16
from ._meta import _IMAGENET_CATEGORIES
17
from ._utils import _make_divisible, _ovewrite_named_param, handle_legacy_interface
18
19


20
21
__all__ = [
    "EfficientNet",
22
23
24
25
26
27
28
29
30
31
32
    "EfficientNet_B0_Weights",
    "EfficientNet_B1_Weights",
    "EfficientNet_B2_Weights",
    "EfficientNet_B3_Weights",
    "EfficientNet_B4_Weights",
    "EfficientNet_B5_Weights",
    "EfficientNet_B6_Weights",
    "EfficientNet_B7_Weights",
    "EfficientNet_V2_S_Weights",
    "EfficientNet_V2_M_Weights",
    "EfficientNet_V2_L_Weights",
33
34
35
36
37
38
39
40
    "efficientnet_b0",
    "efficientnet_b1",
    "efficientnet_b2",
    "efficientnet_b3",
    "efficientnet_b4",
    "efficientnet_b5",
    "efficientnet_b6",
    "efficientnet_b7",
41
42
43
    "efficientnet_v2_s",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
44
]
45
46


47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
@dataclass
class _MBConvConfig:
    expand_ratio: float
    kernel: int
    stride: int
    input_channels: int
    out_channels: int
    num_layers: int
    block: Callable[..., nn.Module]

    @staticmethod
    def adjust_channels(channels: int, width_mult: float, min_value: Optional[int] = None) -> int:
        return _make_divisible(channels * width_mult, 8, min_value)


class MBConvConfig(_MBConvConfig):
    # Stores information listed at Table 1 of the EfficientNet paper & Table 4 of the EfficientNetV2 paper
64
65
66
67
68
69
70
71
    def __init__(
        self,
        expand_ratio: float,
        kernel: int,
        stride: int,
        input_channels: int,
        out_channels: int,
        num_layers: int,
72
73
74
        width_mult: float = 1.0,
        depth_mult: float = 1.0,
        block: Optional[Callable[..., nn.Module]] = None,
75
    ) -> None:
76
77
78
79
80
81
        input_channels = self.adjust_channels(input_channels, width_mult)
        out_channels = self.adjust_channels(out_channels, width_mult)
        num_layers = self.adjust_depth(num_layers, depth_mult)
        if block is None:
            block = MBConv
        super().__init__(expand_ratio, kernel, stride, input_channels, out_channels, num_layers, block)
82
83
84
85
86
87

    @staticmethod
    def adjust_depth(num_layers: int, depth_mult: float):
        return int(math.ceil(num_layers * depth_mult))


88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
class FusedMBConvConfig(_MBConvConfig):
    # Stores information listed at Table 4 of the EfficientNetV2 paper
    def __init__(
        self,
        expand_ratio: float,
        kernel: int,
        stride: int,
        input_channels: int,
        out_channels: int,
        num_layers: int,
        block: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        if block is None:
            block = FusedMBConv
        super().__init__(expand_ratio, kernel, stride, input_channels, out_channels, num_layers, block)


105
class MBConv(nn.Module):
106
107
108
109
110
111
112
    def __init__(
        self,
        cnf: MBConvConfig,
        stochastic_depth_prob: float,
        norm_layer: Callable[..., nn.Module],
        se_layer: Callable[..., nn.Module] = SqueezeExcitation,
    ) -> None:
113
114
115
        super().__init__()

        if not (1 <= cnf.stride <= 2):
116
            raise ValueError("illegal stride value")
117
118
119
120
121
122
123
124
125

        self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels

        layers: List[nn.Module] = []
        activation_layer = nn.SiLU

        # expand
        expanded_channels = cnf.adjust_channels(cnf.input_channels, cnf.expand_ratio)
        if expanded_channels != cnf.input_channels:
126
            layers.append(
127
                Conv2dNormActivation(
128
129
130
131
132
133
134
                    cnf.input_channels,
                    expanded_channels,
                    kernel_size=1,
                    norm_layer=norm_layer,
                    activation_layer=activation_layer,
                )
            )
135
136

        # depthwise
137
        layers.append(
138
            Conv2dNormActivation(
139
140
141
142
143
144
145
146
147
                expanded_channels,
                expanded_channels,
                kernel_size=cnf.kernel,
                stride=cnf.stride,
                groups=expanded_channels,
                norm_layer=norm_layer,
                activation_layer=activation_layer,
            )
        )
148
149
150

        # squeeze and excitation
        squeeze_channels = max(1, cnf.input_channels // 4)
151
        layers.append(se_layer(expanded_channels, squeeze_channels, activation=partial(nn.SiLU, inplace=True)))
152
153

        # project
154
        layers.append(
155
            Conv2dNormActivation(
156
157
158
                expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=None
            )
        )
159
160
161
162
163
164
165
166
167
168
169
170
171

        self.block = nn.Sequential(*layers)
        self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")
        self.out_channels = cnf.out_channels

    def forward(self, input: Tensor) -> Tensor:
        result = self.block(input)
        if self.use_res_connect:
            result = self.stochastic_depth(result)
            result += input
        return result


172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
class FusedMBConv(nn.Module):
    def __init__(
        self,
        cnf: FusedMBConvConfig,
        stochastic_depth_prob: float,
        norm_layer: Callable[..., nn.Module],
    ) -> None:
        super().__init__()

        if not (1 <= cnf.stride <= 2):
            raise ValueError("illegal stride value")

        self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels

        layers: List[nn.Module] = []
        activation_layer = nn.SiLU

        expanded_channels = cnf.adjust_channels(cnf.input_channels, cnf.expand_ratio)
        if expanded_channels != cnf.input_channels:
            # fused expand
            layers.append(
                Conv2dNormActivation(
                    cnf.input_channels,
                    expanded_channels,
                    kernel_size=cnf.kernel,
                    stride=cnf.stride,
                    norm_layer=norm_layer,
                    activation_layer=activation_layer,
                )
            )

            # project
            layers.append(
                Conv2dNormActivation(
                    expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=None
                )
            )
        else:
            layers.append(
                Conv2dNormActivation(
                    cnf.input_channels,
                    cnf.out_channels,
                    kernel_size=cnf.kernel,
                    stride=cnf.stride,
                    norm_layer=norm_layer,
                    activation_layer=activation_layer,
                )
            )

        self.block = nn.Sequential(*layers)
        self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")
        self.out_channels = cnf.out_channels

    def forward(self, input: Tensor) -> Tensor:
        result = self.block(input)
        if self.use_res_connect:
            result = self.stochastic_depth(result)
            result += input
        return result


233
234
class EfficientNet(nn.Module):
    def __init__(
235
        self,
236
        inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
237
238
239
240
        dropout: float,
        stochastic_depth_prob: float = 0.2,
        num_classes: int = 1000,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
241
        last_channel: Optional[int] = None,
242
        **kwargs: Any,
243
244
    ) -> None:
        """
245
        EfficientNet V1 and V2 main class
246
247

        Args:
248
            inverted_residual_setting (Sequence[Union[MBConvConfig, FusedMBConvConfig]]): Network structure
249
250
251
252
            dropout (float): The droupout probability
            stochastic_depth_prob (float): The stochastic depth probability
            num_classes (int): Number of classes
            norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
253
            last_channel (int): The number of channels on the penultimate layer
254
255
        """
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
256
        _log_api_usage_once(self)
257
258
259

        if not inverted_residual_setting:
            raise ValueError("The inverted_residual_setting should not be empty")
260
261
        elif not (
            isinstance(inverted_residual_setting, Sequence)
262
            and all([isinstance(s, _MBConvConfig) for s in inverted_residual_setting])
263
        ):
264
265
            raise TypeError("The inverted_residual_setting should be List[MBConvConfig]")

266
267
268
269
270
271
272
273
274
        if "block" in kwargs:
            warnings.warn(
                "The parameter 'block' is deprecated since 0.13 and will be removed 0.15. "
                "Please pass this information on 'MBConvConfig.block' instead."
            )
            if kwargs["block"] is not None:
                for s in inverted_residual_setting:
                    if isinstance(s, MBConvConfig):
                        s.block = kwargs["block"]
275
276
277
278
279
280
281
282

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        layers: List[nn.Module] = []

        # building first layer
        firstconv_output_channels = inverted_residual_setting[0].input_channels
283
        layers.append(
284
            Conv2dNormActivation(
285
286
287
                3, firstconv_output_channels, kernel_size=3, stride=2, norm_layer=norm_layer, activation_layer=nn.SiLU
            )
        )
288
289

        # building inverted residual blocks
290
        total_stage_blocks = sum(cnf.num_layers for cnf in inverted_residual_setting)
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        stage_block_id = 0
        for cnf in inverted_residual_setting:
            stage: List[nn.Module] = []
            for _ in range(cnf.num_layers):
                # copy to avoid modifications. shallow copy is enough
                block_cnf = copy.copy(cnf)

                # overwrite info if not the first conv in the stage
                if stage:
                    block_cnf.input_channels = block_cnf.out_channels
                    block_cnf.stride = 1

                # adjust stochastic depth probability based on the depth of the stage block
                sd_prob = stochastic_depth_prob * float(stage_block_id) / total_stage_blocks

306
                stage.append(block_cnf.block(block_cnf, sd_prob, norm_layer))
307
308
309
310
311
312
                stage_block_id += 1

            layers.append(nn.Sequential(*stage))

        # building last several layers
        lastconv_input_channels = inverted_residual_setting[-1].out_channels
313
        lastconv_output_channels = last_channel if last_channel is not None else 4 * lastconv_input_channels
314
        layers.append(
315
            Conv2dNormActivation(
316
317
318
319
320
321
322
                lastconv_input_channels,
                lastconv_output_channels,
                kernel_size=1,
                norm_layer=norm_layer,
                activation_layer=nn.SiLU,
            )
        )
323
324
325
326
327
328
329
330
331
332

        self.features = nn.Sequential(*layers)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.classifier = nn.Sequential(
            nn.Dropout(p=dropout, inplace=True),
            nn.Linear(lastconv_output_channels, num_classes),
        )

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
333
                nn.init.kaiming_normal_(m.weight, mode="fan_out")
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                init_range = 1.0 / math.sqrt(m.out_features)
                nn.init.uniform_(m.weight, -init_range, init_range)
                nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        x = self.features(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)

        x = self.classifier(x)

        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


358
def _efficientnet(
359
    inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
360
    dropout: float,
361
    last_channel: Optional[int],
362
    weights: Optional[WeightsEnum],
363
364
365
    progress: bool,
    **kwargs: Any,
) -> EfficientNet:
366
367
368
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

369
    model = EfficientNet(inverted_residual_setting, dropout, last_channel=last_channel, **kwargs)
370
371
372
373

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

374
375
376
    return model


377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
def _efficientnet_conf(
    arch: str,
    **kwargs: Any,
) -> Tuple[Sequence[Union[MBConvConfig, FusedMBConvConfig]], Optional[int]]:
    inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]]
    if arch.startswith("efficientnet_b"):
        bneck_conf = partial(MBConvConfig, width_mult=kwargs.pop("width_mult"), depth_mult=kwargs.pop("depth_mult"))
        inverted_residual_setting = [
            bneck_conf(1, 3, 1, 32, 16, 1),
            bneck_conf(6, 3, 2, 16, 24, 2),
            bneck_conf(6, 5, 2, 24, 40, 2),
            bneck_conf(6, 3, 2, 40, 80, 3),
            bneck_conf(6, 5, 1, 80, 112, 3),
            bneck_conf(6, 5, 2, 112, 192, 4),
            bneck_conf(6, 3, 1, 192, 320, 1),
        ]
        last_channel = None
    elif arch.startswith("efficientnet_v2_s"):
        inverted_residual_setting = [
            FusedMBConvConfig(1, 3, 1, 24, 24, 2),
            FusedMBConvConfig(4, 3, 2, 24, 48, 4),
            FusedMBConvConfig(4, 3, 2, 48, 64, 4),
            MBConvConfig(4, 3, 2, 64, 128, 6),
            MBConvConfig(6, 3, 1, 128, 160, 9),
            MBConvConfig(6, 3, 2, 160, 256, 15),
        ]
        last_channel = 1280
    elif arch.startswith("efficientnet_v2_m"):
        inverted_residual_setting = [
            FusedMBConvConfig(1, 3, 1, 24, 24, 3),
            FusedMBConvConfig(4, 3, 2, 24, 48, 5),
            FusedMBConvConfig(4, 3, 2, 48, 80, 5),
            MBConvConfig(4, 3, 2, 80, 160, 7),
            MBConvConfig(6, 3, 1, 160, 176, 14),
            MBConvConfig(6, 3, 2, 176, 304, 18),
            MBConvConfig(6, 3, 1, 304, 512, 5),
        ]
        last_channel = 1280
    elif arch.startswith("efficientnet_v2_l"):
        inverted_residual_setting = [
            FusedMBConvConfig(1, 3, 1, 32, 32, 4),
            FusedMBConvConfig(4, 3, 2, 32, 64, 7),
            FusedMBConvConfig(4, 3, 2, 64, 96, 7),
            MBConvConfig(4, 3, 2, 96, 192, 10),
            MBConvConfig(6, 3, 1, 192, 224, 19),
            MBConvConfig(6, 3, 2, 224, 384, 25),
            MBConvConfig(6, 3, 1, 384, 640, 7),
        ]
        last_channel = 1280
    else:
        raise ValueError(f"Unsupported model type {arch}")

    return inverted_residual_setting, last_channel


432
_COMMON_META: Dict[str, Any] = {
433
434
435
436
437
438
439
    "categories": _IMAGENET_CATEGORIES,
}


_COMMON_META_V1 = {
    **_COMMON_META,
    "min_size": (1, 1),
440
    "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#efficientnet-v1",
441
442
443
444
445
446
}


_COMMON_META_V2 = {
    **_COMMON_META,
    "min_size": (33, 33),
447
    "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#efficientnet-v2",
448
449
450
451
452
}


class EfficientNet_B0_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
453
        # Weights ported from https://github.com/rwightman/pytorch-image-models/
454
455
456
457
458
459
460
        url="https://download.pytorch.org/models/efficientnet_b0_rwightman-3dd342df.pth",
        transforms=partial(
            ImageClassification, crop_size=224, resize_size=256, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 5288548,
461
462
463
464
465
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 77.692,
                    "acc@5": 93.532,
                }
466
            },
467
            "_docs": """These weights are ported from the original paper.""",
468
469
470
471
472
473
474
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_B1_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
475
        # Weights ported from https://github.com/rwightman/pytorch-image-models/
476
477
478
479
480
481
482
        url="https://download.pytorch.org/models/efficientnet_b1_rwightman-533bc792.pth",
        transforms=partial(
            ImageClassification, crop_size=240, resize_size=256, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 7794184,
483
484
485
486
487
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 78.642,
                    "acc@5": 94.186,
                }
488
            },
489
            "_docs": """These weights are ported from the original paper.""",
490
491
492
493
494
495
496
497
498
499
500
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/efficientnet_b1-c27df63c.pth",
        transforms=partial(
            ImageClassification, crop_size=240, resize_size=255, interpolation=InterpolationMode.BILINEAR
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 7794184,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-lr-wd-crop-tuning",
501
502
503
504
505
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 79.838,
                    "acc@5": 94.934,
                }
506
            },
507
508
509
510
511
            "_docs": """
                These weights improve upon the results of the original paper by using a modified version of TorchVision's
                `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
512
513
514
515
516
517
518
        },
    )
    DEFAULT = IMAGENET1K_V2


class EfficientNet_B2_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
519
        # Weights ported from https://github.com/rwightman/pytorch-image-models/
520
521
522
523
524
525
526
        url="https://download.pytorch.org/models/efficientnet_b2_rwightman-bcdf34b7.pth",
        transforms=partial(
            ImageClassification, crop_size=288, resize_size=288, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 9109994,
527
528
529
530
531
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 80.608,
                    "acc@5": 95.310,
                }
532
            },
533
            "_docs": """These weights are ported from the original paper.""",
534
535
536
537
538
539
540
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_B3_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
541
        # Weights ported from https://github.com/rwightman/pytorch-image-models/
542
543
544
545
546
547
548
        url="https://download.pytorch.org/models/efficientnet_b3_rwightman-cf984f9c.pth",
        transforms=partial(
            ImageClassification, crop_size=300, resize_size=320, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 12233232,
549
550
551
552
553
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 82.008,
                    "acc@5": 96.054,
                }
554
            },
555
            "_docs": """These weights are ported from the original paper.""",
556
557
558
559
560
561
562
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_B4_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
563
        # Weights ported from https://github.com/rwightman/pytorch-image-models/
564
565
566
567
568
569
570
        url="https://download.pytorch.org/models/efficientnet_b4_rwightman-7eb33cd5.pth",
        transforms=partial(
            ImageClassification, crop_size=380, resize_size=384, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 19341616,
571
572
573
574
575
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 83.384,
                    "acc@5": 96.594,
                }
576
            },
577
            "_docs": """These weights are ported from the original paper.""",
578
579
580
581
582
583
584
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_B5_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
585
        # Weights ported from https://github.com/lukemelas/EfficientNet-PyTorch/
586
587
588
589
590
591
592
        url="https://download.pytorch.org/models/efficientnet_b5_lukemelas-b6417697.pth",
        transforms=partial(
            ImageClassification, crop_size=456, resize_size=456, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 30389784,
593
594
595
596
597
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 83.444,
                    "acc@5": 96.628,
                }
598
            },
599
            "_docs": """These weights are ported from the original paper.""",
600
601
602
603
604
605
606
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_B6_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
607
        # Weights ported from https://github.com/lukemelas/EfficientNet-PyTorch/
608
609
610
611
612
613
614
        url="https://download.pytorch.org/models/efficientnet_b6_lukemelas-c76e70fd.pth",
        transforms=partial(
            ImageClassification, crop_size=528, resize_size=528, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 43040704,
615
616
617
618
619
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 84.008,
                    "acc@5": 96.916,
                }
620
            },
621
            "_docs": """These weights are ported from the original paper.""",
622
623
624
625
626
627
628
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_B7_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
629
        # Weights ported from https://github.com/lukemelas/EfficientNet-PyTorch/
630
631
632
633
634
635
636
        url="https://download.pytorch.org/models/efficientnet_b7_lukemelas-dcc49843.pth",
        transforms=partial(
            ImageClassification, crop_size=600, resize_size=600, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META_V1,
            "num_params": 66347960,
637
638
639
640
641
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 84.122,
                    "acc@5": 96.908,
                }
642
            },
643
            "_docs": """These weights are ported from the original paper.""",
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_V2_S_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/efficientnet_v2_s-dd5fe13b.pth",
        transforms=partial(
            ImageClassification,
            crop_size=384,
            resize_size=384,
            interpolation=InterpolationMode.BILINEAR,
        ),
        meta={
            **_COMMON_META_V2,
            "num_params": 21458488,
661
662
663
664
665
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 84.228,
                    "acc@5": 96.878,
                }
666
            },
667
668
669
670
671
            "_docs": """
                These weights improve upon the results of the original paper by using a modified version of TorchVision's
                `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_V2_M_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/efficientnet_v2_m-dc08266a.pth",
        transforms=partial(
            ImageClassification,
            crop_size=480,
            resize_size=480,
            interpolation=InterpolationMode.BILINEAR,
        ),
        meta={
            **_COMMON_META_V2,
            "num_params": 54139356,
689
690
691
692
693
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 85.112,
                    "acc@5": 97.156,
                }
694
            },
695
696
697
698
699
            "_docs": """
                These weights improve upon the results of the original paper by using a modified version of TorchVision's
                `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
700
701
702
703
704
705
        },
    )
    DEFAULT = IMAGENET1K_V1


class EfficientNet_V2_L_Weights(WeightsEnum):
706
    # Weights ported from https://github.com/google/automl/tree/master/efficientnetv2
707
708
709
710
711
712
713
714
715
716
717
718
719
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/efficientnet_v2_l-59c71312.pth",
        transforms=partial(
            ImageClassification,
            crop_size=480,
            resize_size=480,
            interpolation=InterpolationMode.BICUBIC,
            mean=(0.5, 0.5, 0.5),
            std=(0.5, 0.5, 0.5),
        ),
        meta={
            **_COMMON_META_V2,
            "num_params": 118515272,
720
721
722
723
724
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 85.808,
                    "acc@5": 97.788,
                }
725
            },
726
            "_docs": """These weights are ported from the original paper.""",
727
728
729
730
731
732
733
734
735
        },
    )
    DEFAULT = IMAGENET1K_V1


@handle_legacy_interface(weights=("pretrained", EfficientNet_B0_Weights.IMAGENET1K_V1))
def efficientnet_b0(
    *, weights: Optional[EfficientNet_B0_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
736
737
    """EfficientNet B0 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional
    Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.
738
739

    Args:
740
741
742
743
744
745
746
747
748
749
750
751
752
        weights (:class:`~torchvision.models.EfficientNet_B0_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.EfficientNet_B0_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.EfficientNet_B0_Weights
        :members:
753
    """
754
755
756
757
    weights = EfficientNet_B0_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b0", width_mult=1.0, depth_mult=1.0)
    return _efficientnet(inverted_residual_setting, 0.2, last_channel, weights, progress, **kwargs)
758
759


760
761
762
763
@handle_legacy_interface(weights=("pretrained", EfficientNet_B1_Weights.IMAGENET1K_V1))
def efficientnet_b1(
    *, weights: Optional[EfficientNet_B1_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
764
765
    """EfficientNet B1 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional
    Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.
766
767

    Args:
768
769
770
771
772
773
774
775
776
777
778
779
780
        weights (:class:`~torchvision.models.EfficientNet_B1_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.EfficientNet_B1_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.EfficientNet_B1_Weights
        :members:
781
    """
782
    weights = EfficientNet_B1_Weights.verify(weights)
783

784
785
    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b1", width_mult=1.0, depth_mult=1.1)
    return _efficientnet(inverted_residual_setting, 0.2, last_channel, weights, progress, **kwargs)
786

787
788
789
790
791

@handle_legacy_interface(weights=("pretrained", EfficientNet_B2_Weights.IMAGENET1K_V1))
def efficientnet_b2(
    *, weights: Optional[EfficientNet_B2_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
792
793
    """EfficientNet B2 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional
    Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.
794
795

    Args:
796
797
798
799
800
801
802
803
804
805
806
807
808
        weights (:class:`~torchvision.models.EfficientNet_B2_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.EfficientNet_B2_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.EfficientNet_B2_Weights
        :members:
809
    """
810
811
812
813
    weights = EfficientNet_B2_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b2", width_mult=1.1, depth_mult=1.2)
    return _efficientnet(inverted_residual_setting, 0.3, last_channel, weights, progress, **kwargs)
814
815


816
817
818
819
@handle_legacy_interface(weights=("pretrained", EfficientNet_B3_Weights.IMAGENET1K_V1))
def efficientnet_b3(
    *, weights: Optional[EfficientNet_B3_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
820
821
    """EfficientNet B3 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional
    Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.
822
823

    Args:
824
825
826
827
828
829
830
831
832
833
834
835
836
        weights (:class:`~torchvision.models.EfficientNet_B3_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.EfficientNet_B3_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.EfficientNet_B3_Weights
        :members:
837
    """
838
839
840
841
    weights = EfficientNet_B3_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b3", width_mult=1.2, depth_mult=1.4)
    return _efficientnet(inverted_residual_setting, 0.3, last_channel, weights, progress, **kwargs)
842
843


844
845
846
847
@handle_legacy_interface(weights=("pretrained", EfficientNet_B4_Weights.IMAGENET1K_V1))
def efficientnet_b4(
    *, weights: Optional[EfficientNet_B4_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
848
849
    """EfficientNet B4 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional
    Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.
850
851

    Args:
852
853
854
855
856
857
858
859
860
861
862
863
864
        weights (:class:`~torchvision.models.EfficientNet_B4_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.EfficientNet_B4_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.EfficientNet_B4_Weights
        :members:
865
    """
866
    weights = EfficientNet_B4_Weights.verify(weights)
867

868
869
    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b4", width_mult=1.4, depth_mult=1.8)
    return _efficientnet(inverted_residual_setting, 0.4, last_channel, weights, progress, **kwargs)
870

871
872
873
874
875

@handle_legacy_interface(weights=("pretrained", EfficientNet_B5_Weights.IMAGENET1K_V1))
def efficientnet_b5(
    *, weights: Optional[EfficientNet_B5_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
876
877
    """EfficientNet B5 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional
    Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.
878
879

    Args:
880
881
882
883
884
885
886
887
888
889
890
891
892
        weights (:class:`~torchvision.models.EfficientNet_B5_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.EfficientNet_B5_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.EfficientNet_B5_Weights
        :members:
893
    """
894
895
896
    weights = EfficientNet_B5_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b5", width_mult=1.6, depth_mult=2.2)
897
    return _efficientnet(
898
        inverted_residual_setting,
899
        0.4,
900
        last_channel,
901
        weights,
902
903
904
905
        progress,
        norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01),
        **kwargs,
    )
906
907


908
909
910
911
@handle_legacy_interface(weights=("pretrained", EfficientNet_B6_Weights.IMAGENET1K_V1))
def efficientnet_b6(
    *, weights: Optional[EfficientNet_B6_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
912
913
    """EfficientNet B6 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional
    Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.
914
915

    Args:
916
917
918
919
920
921
922
923
924
925
926
927
928
        weights (:class:`~torchvision.models.EfficientNet_B6_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.EfficientNet_B6_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.EfficientNet_B6_Weights
        :members:
929
    """
930
931
932
    weights = EfficientNet_B6_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b6", width_mult=1.8, depth_mult=2.6)
933
    return _efficientnet(
934
        inverted_residual_setting,
935
        0.5,
936
        last_channel,
937
        weights,
938
939
940
941
        progress,
        norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01),
        **kwargs,
    )
942
943


944
945
946
947
@handle_legacy_interface(weights=("pretrained", EfficientNet_B7_Weights.IMAGENET1K_V1))
def efficientnet_b7(
    *, weights: Optional[EfficientNet_B7_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
948
949
    """EfficientNet B7 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional
    Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.
950
951

    Args:
952
953
954
955
956
957
958
959
960
961
962
963
964
        weights (:class:`~torchvision.models.EfficientNet_B7_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.EfficientNet_B7_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.EfficientNet_B7_Weights
        :members:
965
    """
966
967
968
    weights = EfficientNet_B7_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b7", width_mult=2.0, depth_mult=3.1)
969
    return _efficientnet(
970
        inverted_residual_setting,
971
        0.5,
972
        last_channel,
973
        weights,
974
975
976
977
        progress,
        norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01),
        **kwargs,
    )
978
979


980
981
982
983
@handle_legacy_interface(weights=("pretrained", EfficientNet_V2_S_Weights.IMAGENET1K_V1))
def efficientnet_v2_s(
    *, weights: Optional[EfficientNet_V2_S_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
984
985
    """
    Constructs an EfficientNetV2-S architecture from
986
    `EfficientNetV2: Smaller Models and Faster Training <https://arxiv.org/abs/2104.00298>`_.
987
988

    Args:
989
990
991
992
993
994
995
996
997
998
999
1000
1001
        weights (:class:`~torchvision.models.EfficientNet_V2_S_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.EfficientNet_V2_S_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.EfficientNet_V2_S_Weights
        :members:
1002
    """
1003
1004
1005
    weights = EfficientNet_V2_S_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_v2_s")
1006
1007
1008
1009
    return _efficientnet(
        inverted_residual_setting,
        0.2,
        last_channel,
1010
        weights,
1011
1012
1013
1014
1015
1016
        progress,
        norm_layer=partial(nn.BatchNorm2d, eps=1e-03),
        **kwargs,
    )


1017
1018
1019
1020
@handle_legacy_interface(weights=("pretrained", EfficientNet_V2_M_Weights.IMAGENET1K_V1))
def efficientnet_v2_m(
    *, weights: Optional[EfficientNet_V2_M_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
1021
1022
    """
    Constructs an EfficientNetV2-M architecture from
1023
    `EfficientNetV2: Smaller Models and Faster Training <https://arxiv.org/abs/2104.00298>`_.
1024
1025

    Args:
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
        weights (:class:`~torchvision.models.EfficientNet_V2_M_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.EfficientNet_V2_M_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.EfficientNet_V2_M_Weights
        :members:
1039
    """
1040
1041
1042
    weights = EfficientNet_V2_M_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_v2_m")
1043
1044
1045
1046
    return _efficientnet(
        inverted_residual_setting,
        0.3,
        last_channel,
1047
        weights,
1048
1049
1050
1051
1052
1053
        progress,
        norm_layer=partial(nn.BatchNorm2d, eps=1e-03),
        **kwargs,
    )


1054
1055
1056
1057
@handle_legacy_interface(weights=("pretrained", EfficientNet_V2_L_Weights.IMAGENET1K_V1))
def efficientnet_v2_l(
    *, weights: Optional[EfficientNet_V2_L_Weights] = None, progress: bool = True, **kwargs: Any
) -> EfficientNet:
1058
1059
    """
    Constructs an EfficientNetV2-L architecture from
1060
    `EfficientNetV2: Smaller Models and Faster Training <https://arxiv.org/abs/2104.00298>`_.
1061
1062

    Args:
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
        weights (:class:`~torchvision.models.EfficientNet_V2_L_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.EfficientNet_V2_L_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.EfficientNet_V2_L_Weights
        :members:
1076
    """
1077
1078
1079
    weights = EfficientNet_V2_L_Weights.verify(weights)

    inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_v2_l")
1080
1081
1082
1083
    return _efficientnet(
        inverted_residual_setting,
        0.4,
        last_channel,
1084
        weights,
1085
1086
1087
1088
        progress,
        norm_layer=partial(nn.BatchNorm2d, eps=1e-03),
        **kwargs,
    )
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106


# The dictionary below is internal implementation detail and will be removed in v0.15
from ._utils import _ModelURLs


model_urls = _ModelURLs(
    {
        "efficientnet_b0": EfficientNet_B0_Weights.IMAGENET1K_V1.url,
        "efficientnet_b1": EfficientNet_B1_Weights.IMAGENET1K_V1.url,
        "efficientnet_b2": EfficientNet_B2_Weights.IMAGENET1K_V1.url,
        "efficientnet_b3": EfficientNet_B3_Weights.IMAGENET1K_V1.url,
        "efficientnet_b4": EfficientNet_B4_Weights.IMAGENET1K_V1.url,
        "efficientnet_b5": EfficientNet_B5_Weights.IMAGENET1K_V1.url,
        "efficientnet_b6": EfficientNet_B6_Weights.IMAGENET1K_V1.url,
        "efficientnet_b7": EfficientNet_B7_Weights.IMAGENET1K_V1.url,
    }
)