mnist.py 12.5 KB
Newer Older
Tian Qi Chen's avatar
Tian Qi Chen committed
1
2
3
4
5
6
from __future__ import print_function
import torch.utils.data as data
from PIL import Image
import os
import os.path
import errno
7
import numpy as np
Tian Qi Chen's avatar
Tian Qi Chen committed
8
9
10
import torch
import codecs

11

Tian Qi Chen's avatar
Tian Qi Chen committed
12
class MNIST(data.Dataset):
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
    """`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset.

    Args:
        root (string): Root directory of dataset where ``processed/training.pt``
            and  ``processed/test.pt`` exist.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
Tian Qi Chen's avatar
Tian Qi Chen committed
28
29
30
31
32
33
34
35
36
37
    urls = [
        'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
        'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz',
        'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz',
        'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz',
    ]
    raw_folder = 'raw'
    processed_folder = 'processed'
    training_file = 'training.pt'
    test_file = 'test.pt'
38
39
40
41
42
43
44
45
46
47
    classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
               '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']
    class_to_idx = {_class: i for i, _class in enumerate(classes)}

    @property
    def targets(self):
        if self.train:
            return self.train_labels
        else:
            return self.test_labels
Tian Qi Chen's avatar
Tian Qi Chen committed
48
49

    def __init__(self, root, train=True, transform=None, target_transform=None, download=False):
50
        self.root = os.path.expanduser(root)
Tian Qi Chen's avatar
Tian Qi Chen committed
51
52
        self.transform = transform
        self.target_transform = target_transform
53
        self.train = train  # training set or test set
Tian Qi Chen's avatar
Tian Qi Chen committed
54
55
56
57
58

        if download:
            self.download()

        if not self._check_exists():
59
60
            raise RuntimeError('Dataset not found.' +
                               ' You can use download=True to download it')
Tian Qi Chen's avatar
Tian Qi Chen committed
61
62

        if self.train:
63
            self.train_data, self.train_labels = torch.load(
moskomule's avatar
moskomule committed
64
                os.path.join(self.root, self.processed_folder, self.training_file))
Tian Qi Chen's avatar
Tian Qi Chen committed
65
        else:
Mikhail Korobov's avatar
Mikhail Korobov committed
66
67
            self.test_data, self.test_labels = torch.load(
                os.path.join(self.root, self.processed_folder, self.test_file))
Tian Qi Chen's avatar
Tian Qi Chen committed
68
69

    def __getitem__(self, index):
70
71
72
73
74
75
76
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
Tian Qi Chen's avatar
Tian Qi Chen committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        if self.train:
            img, target = self.train_data[index], self.train_labels[index]
        else:
            img, target = self.test_data[index], self.test_labels[index]

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img.numpy(), mode='L')

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        if self.train:
Keon's avatar
Keon committed
96
            return len(self.train_data)
Tian Qi Chen's avatar
Tian Qi Chen committed
97
        else:
Keon's avatar
Keon committed
98
            return len(self.test_data)
Tian Qi Chen's avatar
Tian Qi Chen committed
99
100
101

    def _check_exists(self):
        return os.path.exists(os.path.join(self.root, self.processed_folder, self.training_file)) and \
102
            os.path.exists(os.path.join(self.root, self.processed_folder, self.test_file))
Tian Qi Chen's avatar
Tian Qi Chen committed
103
104

    def download(self):
105
        """Download the MNIST data if it doesn't exist in processed_folder already."""
Tian Qi Chen's avatar
Tian Qi Chen committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        from six.moves import urllib
        import gzip

        if self._check_exists():
            return

        # download files
        try:
            os.makedirs(os.path.join(self.root, self.raw_folder))
            os.makedirs(os.path.join(self.root, self.processed_folder))
        except OSError as e:
            if e.errno == errno.EEXIST:
                pass
            else:
                raise

        for url in self.urls:
            print('Downloading ' + url)
            data = urllib.request.urlopen(url)
            filename = url.rpartition('/')[2]
            file_path = os.path.join(self.root, self.raw_folder, filename)
            with open(file_path, 'wb') as f:
                f.write(data.read())
            with open(file_path.replace('.gz', ''), 'wb') as out_f, \
130
                    gzip.GzipFile(file_path) as zip_f:
Tian Qi Chen's avatar
Tian Qi Chen committed
131
132
133
134
                out_f.write(zip_f.read())
            os.unlink(file_path)

        # process and save as torch files
Adam Paszke's avatar
Adam Paszke committed
135
136
        print('Processing...')

Tian Qi Chen's avatar
Tian Qi Chen committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        training_set = (
            read_image_file(os.path.join(self.root, self.raw_folder, 'train-images-idx3-ubyte')),
            read_label_file(os.path.join(self.root, self.raw_folder, 'train-labels-idx1-ubyte'))
        )
        test_set = (
            read_image_file(os.path.join(self.root, self.raw_folder, 't10k-images-idx3-ubyte')),
            read_label_file(os.path.join(self.root, self.raw_folder, 't10k-labels-idx1-ubyte'))
        )
        with open(os.path.join(self.root, self.processed_folder, self.training_file), 'wb') as f:
            torch.save(training_set, f)
        with open(os.path.join(self.root, self.processed_folder, self.test_file), 'wb') as f:
            torch.save(test_set, f)

        print('Done!')

152
153
154
155
156
157
158
159
160
161
162
163
    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        tmp = 'train' if self.train is True else 'test'
        fmt_str += '    Split: {}\n'.format(tmp)
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str

164

165
class FashionMNIST(MNIST):
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    """`Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset.

    Args:
        root (string): Root directory of dataset where ``processed/training.pt``
            and  ``processed/test.pt`` exist.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
180
181
182
183
184
185
186
    """
    urls = [
        'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz',
        'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz',
        'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz',
        'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz',
    ]
187
188
189
    classes = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal',
               'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
    class_to_idx = {_class: i for i, _class in enumerate(classes)}
190
191


192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
class EMNIST(MNIST):
    """`EMNIST <https://www.nist.gov/itl/iad/image-group/emnist-dataset/>`_ Dataset.

    Args:
        root (string): Root directory of dataset where ``processed/training.pt``
            and  ``processed/test.pt`` exist.
        split (string): The dataset has 6 different splits: ``byclass``, ``bymerge``,
            ``balanced``, ``letters``, ``digits`` and ``mnist``. This argument specifies
            which one to use.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
211
    url = 'http://www.itl.nist.gov/iaui/vip/cs_links/EMNIST/gzip.zip'
212
213
214
215
216
217
218
219
220
221
222
    splits = ('byclass', 'bymerge', 'balanced', 'letters', 'digits', 'mnist')

    def __init__(self, root, split, **kwargs):
        if split not in self.splits:
            raise ValueError('Split "{}" not found. Valid splits are: {}'.format(
                split, ', '.join(self.splits),
            ))
        self.split = split
        self.training_file = self._training_file(split)
        self.test_file = self._test_file(split)
        super(EMNIST, self).__init__(root, **kwargs)
Tian Qi Chen's avatar
Tian Qi Chen committed
223

224
225
226
227
228
229
230
231
232
233
234
235
    def _training_file(self, split):
        return 'training_{}.pt'.format(split)

    def _test_file(self, split):
        return 'test_{}.pt'.format(split)

    def download(self):
        """Download the EMNIST data if it doesn't exist in processed_folder already."""
        from six.moves import urllib
        import gzip
        import shutil
        import zipfile
236

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        if self._check_exists():
            return

        # download files
        try:
            os.makedirs(os.path.join(self.root, self.raw_folder))
            os.makedirs(os.path.join(self.root, self.processed_folder))
        except OSError as e:
            if e.errno == errno.EEXIST:
                pass
            else:
                raise

        print('Downloading ' + self.url)
        data = urllib.request.urlopen(self.url)
        filename = self.url.rpartition('/')[2]
        raw_folder = os.path.join(self.root, self.raw_folder)
        file_path = os.path.join(raw_folder, filename)
        with open(file_path, 'wb') as f:
            f.write(data.read())

        print('Extracting zip archive')
        with zipfile.ZipFile(file_path) as zip_f:
            zip_f.extractall(raw_folder)
        os.unlink(file_path)
        gzip_folder = os.path.join(raw_folder, 'gzip')
        for gzip_file in os.listdir(gzip_folder):
            if gzip_file.endswith('.gz'):
                print('Extracting ' + gzip_file)
                with open(os.path.join(raw_folder, gzip_file.replace('.gz', '')), 'wb') as out_f, \
                        gzip.GzipFile(os.path.join(gzip_folder, gzip_file)) as zip_f:
                    out_f.write(zip_f.read())
        shutil.rmtree(gzip_folder)

        # process and save as torch files
        for split in self.splits:
            print('Processing ' + split)
            training_set = (
                read_image_file(os.path.join(raw_folder, 'emnist-{}-train-images-idx3-ubyte'.format(split))),
                read_label_file(os.path.join(raw_folder, 'emnist-{}-train-labels-idx1-ubyte'.format(split)))
            )
            test_set = (
                read_image_file(os.path.join(raw_folder, 'emnist-{}-test-images-idx3-ubyte'.format(split))),
                read_label_file(os.path.join(raw_folder, 'emnist-{}-test-labels-idx1-ubyte'.format(split)))
            )
            with open(os.path.join(self.root, self.processed_folder, self._training_file(split)), 'wb') as f:
                torch.save(training_set, f)
            with open(os.path.join(self.root, self.processed_folder, self._test_file(split)), 'wb') as f:
                torch.save(test_set, f)

        print('Done!')


def get_int(b):
    return int(codecs.encode(b, 'hex'), 16)
Tian Qi Chen's avatar
Tian Qi Chen committed
292

293

Tian Qi Chen's avatar
Tian Qi Chen committed
294
295
296
297
298
def read_label_file(path):
    with open(path, 'rb') as f:
        data = f.read()
        assert get_int(data[:4]) == 2049
        length = get_int(data[4:8])
299
300
        parsed = np.frombuffer(data, dtype=np.uint8, offset=8)
        return torch.from_numpy(parsed).view(length).long()
Tian Qi Chen's avatar
Tian Qi Chen committed
301

302

Tian Qi Chen's avatar
Tian Qi Chen committed
303
304
305
306
307
308
309
310
def read_image_file(path):
    with open(path, 'rb') as f:
        data = f.read()
        assert get_int(data[:4]) == 2051
        length = get_int(data[4:8])
        num_rows = get_int(data[8:12])
        num_cols = get_int(data[12:16])
        images = []
311
312
        parsed = np.frombuffer(data, dtype=np.uint8, offset=16)
        return torch.from_numpy(parsed).view(length, num_rows, num_cols)