test_video_reader.py 45.8 KB
Newer Older
1
import collections
2
import itertools
3
4
import math
import os
5
6
7
from fractions import Fraction

import numpy as np
8
import pytest
9
10
import torch
import torchvision.io as io
11
from common_utils import assert_equal
12
from numpy.random import randint
13
from pytest import approx
14
from torchvision import set_video_backend
15
16
from torchvision.io import _HAS_VIDEO_OPT

17
18
19

try:
    import av
20

21
22
23
24
25
26
27
28
29
    # Do a version test too
    io.video._check_av_available()
except ImportError:
    av = None


VIDEO_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "videos")

CheckerConfig = [
30
    "duration",
31
32
33
34
35
36
37
    "video_fps",
    "audio_sample_rate",
    # We find for some videos (e.g. HMDB51 videos), the decoded audio frames and pts are
    # slightly different between TorchVision decoder and PyAv decoder. So omit it during check
    "check_aframes",
    "check_aframe_pts",
]
38
GroundTruth = collections.namedtuple("GroundTruth", " ".join(CheckerConfig))
39
40

all_check_config = GroundTruth(
41
    duration=0,
42
43
44
45
46
47
48
49
    video_fps=0,
    audio_sample_rate=0,
    check_aframes=True,
    check_aframe_pts=True,
)

test_videos = {
    "RATRACE_wave_f_nm_np1_fr_goo_37.avi": GroundTruth(
50
        duration=2.0,
51
52
53
54
55
56
        video_fps=30.0,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "SchoolRulesHowTheyHelpUs_wave_f_nm_np1_ba_med_0.avi": GroundTruth(
57
        duration=2.0,
58
59
60
61
62
63
        video_fps=30.0,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "TrumanShow_wave_f_nm_np1_fr_med_26.avi": GroundTruth(
64
        duration=2.0,
65
66
67
68
69
70
        video_fps=30.0,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "v_SoccerJuggling_g23_c01.avi": GroundTruth(
71
        duration=8.0,
72
73
74
75
76
77
        video_fps=29.97,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "v_SoccerJuggling_g24_c01.avi": GroundTruth(
78
        duration=8.0,
79
80
81
82
83
84
        video_fps=29.97,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "R6llTwEh07w.mp4": GroundTruth(
85
        duration=10.0,
86
87
88
89
90
91
92
        video_fps=30.0,
        audio_sample_rate=44100,
        # PyAv miss one audio frame at the beginning (pts=0)
        check_aframes=False,
        check_aframe_pts=False,
    ),
    "SOX5yA1l24A.mp4": GroundTruth(
93
        duration=11.0,
94
95
96
97
98
99
100
        video_fps=29.97,
        audio_sample_rate=48000,
        # PyAv miss one audio frame at the beginning (pts=0)
        check_aframes=False,
        check_aframe_pts=False,
    ),
    "WUzgd7C1pWA.mp4": GroundTruth(
101
        duration=11.0,
102
103
104
105
106
107
108
109
110
        video_fps=29.97,
        audio_sample_rate=48000,
        # PyAv miss one audio frame at the beginning (pts=0)
        check_aframes=False,
        check_aframe_pts=False,
    ),
}


111
DecoderResult = collections.namedtuple("DecoderResult", "vframes vframe_pts vtimebase aframes aframe_pts atimebase")
112

113
114
# av_seek_frame is imprecise so seek to a timestamp earlier by a margin
# The unit of margin is second
115
116
117
seek_frame_margin = 0.25


118
def _read_from_stream(container, start_pts, end_pts, stream, stream_name, buffer_size=4):
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    """
    Args:
        container: pyav container
        start_pts/end_pts: the starting/ending Presentation TimeStamp where
            frames are read
        stream: pyav stream
        stream_name: a dictionary of streams. For example, {"video": 0} means
            video stream at stream index 0
        buffer_size: pts of frames decoded by PyAv is not guaranteed to be in
            ascending order. We need to decode more frames even when we meet end
            pts
    """
    # seeking in the stream is imprecise. Thus, seek to an ealier PTS by a margin
    margin = 1
    seek_offset = max(start_pts - margin, 0)

    container.seek(seek_offset, any_frame=False, backward=True, stream=stream)
    frames = {}
    buffer_count = 0
    for frame in container.decode(**stream_name):
        if frame.pts < start_pts:
            continue
        if frame.pts <= end_pts:
            frames[frame.pts] = frame
        else:
            buffer_count += 1
            if buffer_count >= buffer_size:
                break
    result = [frames[pts] for pts in sorted(frames)]

    return result


def _get_timebase_by_av_module(full_path):
    container = av.open(full_path)
    video_time_base = container.streams.video[0].time_base
    if container.streams.audio:
        audio_time_base = container.streams.audio[0].time_base
    else:
        audio_time_base = None
    return video_time_base, audio_time_base


def _fraction_to_tensor(fraction):
    ret = torch.zeros([2], dtype=torch.int32)
    ret[0] = fraction.numerator
    ret[1] = fraction.denominator
    return ret


def _decode_frames_by_av_module(
    full_path,
    video_start_pts=0,
    video_end_pts=None,
    audio_start_pts=0,
    audio_end_pts=None,
):
    """
    Use PyAv to decode video frames. This provides a reference for our decoder
    to compare the decoding results.
    Input arguments:
        full_path: video file path
        video_start_pts/video_end_pts: the starting/ending Presentation TimeStamp where
            frames are read
    """
    if video_end_pts is None:
185
        video_end_pts = float("inf")
186
    if audio_end_pts is None:
187
        audio_end_pts = float("inf")
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    container = av.open(full_path)

    video_frames = []
    vtimebase = torch.zeros([0], dtype=torch.int32)
    if container.streams.video:
        video_frames = _read_from_stream(
            container,
            video_start_pts,
            video_end_pts,
            container.streams.video[0],
            {"video": 0},
        )
        # container.streams.video[0].average_rate is not a reliable estimator of
        # frame rate. It can be wrong for certain codec, such as VP80
        # So we do not return video fps here
        vtimebase = _fraction_to_tensor(container.streams.video[0].time_base)

    audio_frames = []
    atimebase = torch.zeros([0], dtype=torch.int32)
    if container.streams.audio:
        audio_frames = _read_from_stream(
            container,
            audio_start_pts,
            audio_end_pts,
            container.streams.audio[0],
            {"audio": 0},
        )
        atimebase = _fraction_to_tensor(container.streams.audio[0].time_base)

    container.close()
    vframes = [frame.to_rgb().to_ndarray() for frame in video_frames]
    vframes = torch.as_tensor(np.stack(vframes))

    vframe_pts = torch.tensor([frame.pts for frame in video_frames], dtype=torch.int64)

    aframes = [frame.to_ndarray() for frame in audio_frames]
    if aframes:
        aframes = np.transpose(np.concatenate(aframes, axis=1))
        aframes = torch.as_tensor(aframes)
    else:
        aframes = torch.empty((1, 0), dtype=torch.float32)

230
    aframe_pts = torch.tensor([audio_frame.pts for audio_frame in audio_frames], dtype=torch.int64)
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

    return DecoderResult(
        vframes=vframes,
        vframe_pts=vframe_pts,
        vtimebase=vtimebase,
        aframes=aframes,
        aframe_pts=aframe_pts,
        atimebase=atimebase,
    )


def _pts_convert(pts, timebase_from, timebase_to, round_func=math.floor):
    """convert pts between different time bases
    Args:
        pts: presentation timestamp, float
        timebase_from: original timebase. Fraction
        timebase_to: new timebase. Fraction
        round_func: rounding function.
    """
    new_pts = Fraction(pts, 1) * timebase_from / timebase_to
    return int(round_func(new_pts))


def _get_video_tensor(video_dir, video_file):
    """open a video file, and represent the video data by a PT tensor"""
    full_path = os.path.join(video_dir, video_file)

    assert os.path.exists(full_path), "File not found: %s" % full_path

    with open(full_path, "rb") as fp:
        video_tensor = torch.from_numpy(np.frombuffer(fp.read(), dtype=np.uint8))

    return full_path, video_tensor


266
267
268
@pytest.mark.skipif(av is None, reason="PyAV unavailable")
@pytest.mark.skipif(_HAS_VIDEO_OPT is False, reason="Didn't compile with ffmpeg")
class TestVideoReader:
269
    def check_separate_decoding_result(self, tv_result, config):
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        """check the decoding results from TorchVision decoder"""
        (
            vframes,
            vframe_pts,
            vtimebase,
            vfps,
            vduration,
            aframes,
            aframe_pts,
            atimebase,
            asample_rate,
            aduration,
        ) = tv_result

        video_duration = vduration.item() * Fraction(vtimebase[0].item(), vtimebase[1].item())
285
286
287
        assert video_duration == approx(config.duration, abs=0.5)

        assert vfps.item() == approx(config.video_fps, abs=0.5)
288
289

        if asample_rate.numel() > 0:
290
            assert asample_rate.item() == config.audio_sample_rate
291
            audio_duration = aduration.item() * Fraction(atimebase[0].item(), atimebase[1].item())
292
            assert audio_duration == approx(config.duration, abs=0.5)
293

294
295
        # check if pts of video frames are sorted in ascending order
        for i in range(len(vframe_pts) - 1):
296
            assert vframe_pts[i] < vframe_pts[i + 1]
297
298
299
300

        if len(aframe_pts) > 1:
            # check if pts of audio frames are sorted in ascending order
            for i in range(len(aframe_pts) - 1):
301
                assert aframe_pts[i] < aframe_pts[i + 1]
302

303
304
    def check_probe_result(self, result, config):
        vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
305
        video_duration = vduration.item() * Fraction(vtimebase[0].item(), vtimebase[1].item())
306
307
        assert video_duration == approx(config.duration, abs=0.5)
        assert vfps.item() == approx(config.video_fps, abs=0.5)
308
        if asample_rate.numel() > 0:
309
            assert asample_rate.item() == config.audio_sample_rate
310
            audio_duration = aduration.item() * Fraction(atimebase[0].item(), atimebase[1].item())
311
            assert audio_duration == approx(config.duration, abs=0.5)
312

313
    def check_meta_result(self, result, config):
314
315
        assert result.video_duration == approx(config.duration, abs=0.5)
        assert result.video_fps == approx(config.video_fps, abs=0.5)
316
        if result.has_audio > 0:
317
318
            assert result.audio_sample_rate == config.audio_sample_rate
            assert result.audio_duration == approx(config.duration, abs=0.5)
319

320
321
322
323
324
325
326
327
328
    def compare_decoding_result(self, tv_result, ref_result, config=all_check_config):
        """
        Compare decoding results from two sources.
        Args:
            tv_result: decoding results from TorchVision decoder
            ref_result: reference decoding results which can be from either PyAv
                        decoder or TorchVision decoder with getPtsOnly = 1
            config: config of decoding results checker
        """
329
330
331
332
333
334
335
336
337
338
339
340
        (
            vframes,
            vframe_pts,
            vtimebase,
            _vfps,
            _vduration,
            aframes,
            aframe_pts,
            atimebase,
            _asample_rate,
            _aduration,
        ) = tv_result
341
342
343
344
345
346
        if isinstance(ref_result, list):
            # the ref_result is from new video_reader decoder
            ref_result = DecoderResult(
                vframes=ref_result[0],
                vframe_pts=ref_result[1],
                vtimebase=ref_result[2],
347
348
349
                aframes=ref_result[5],
                aframe_pts=ref_result[6],
                atimebase=ref_result[7],
350
351
352
            )

        if vframes.numel() > 0 and ref_result.vframes.numel() > 0:
353
            mean_delta = torch.mean(torch.abs(vframes.float() - ref_result.vframes.float()))
354
            assert mean_delta == approx(0.0, abs=8.0)
355

356
        mean_delta = torch.mean(torch.abs(vframe_pts.float() - ref_result.vframe_pts.float()))
357
        assert mean_delta == approx(0.0, abs=1.0)
358

359
        assert_equal(vtimebase, ref_result.vtimebase)
360

361
        if config.check_aframes and aframes.numel() > 0 and ref_result.aframes.numel() > 0:
362
363
            """Audio stream is available and audio frame is required to return
            from decoder"""
364
            assert_equal(aframes, ref_result.aframes)
365

366
        if config.check_aframe_pts and aframe_pts.numel() > 0 and ref_result.aframe_pts.numel() > 0:
367
            """Audio stream is available"""
368
            assert_equal(aframe_pts, ref_result.aframe_pts)
369

370
            assert_equal(atimebase, ref_result.atimebase)
371
372

    def test_stress_test_read_video_from_file(self):
373
374
375
376
377
        pytest.skip(
            "This stress test will iteratively decode the same set of videos."
            "It helps to detect memory leak but it takes lots of time to run."
            "By default, it is disabled"
        )
378
379
        num_iter = 10000
        # video related
380
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
381
382
383
384
385
386
387
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

388
389
        for _i in range(num_iter):
            for test_video, _config in test_videos.items():
390
391
392
                full_path = os.path.join(VIDEO_DIR, test_video)

                # pass 1: decode all frames using new decoder
393
                torch.ops.video_reader.read_video_from_file(
394
395
396
397
398
399
400
                    full_path,
                    seek_frame_margin,
                    0,  # getPtsOnly
                    1,  # readVideoStream
                    width,
                    height,
                    min_dimension,
401
                    max_dimension,
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
                    video_start_pts,
                    video_end_pts,
                    video_timebase_num,
                    video_timebase_den,
                    1,  # readAudioStream
                    samples,
                    channels,
                    audio_start_pts,
                    audio_end_pts,
                    audio_timebase_num,
                    audio_timebase_den,
                )

    def test_read_video_from_file(self):
        """
        Test the case when decoder starts with a video file to decode frames.
        """
        # video related
420
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)

            # pass 1: decode all frames using new decoder
            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
440
                max_dimension,
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            # pass 2: decode all frames using av
            pyav_result = _decode_frames_by_av_module(full_path)
            # check results from TorchVision decoder
            self.check_separate_decoding_result(tv_result, config)
            # compare decoding results
            self.compare_decoding_result(tv_result, pyav_result, config)

    def test_read_video_from_file_read_single_stream_only(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        only reads video stream and ignores audio stream
        """
        # video related
466
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)
            for readVideoStream, readAudioStream in [(1, 0), (0, 1)]:
                # decode all frames using new decoder
                tv_result = torch.ops.video_reader.read_video_from_file(
                    full_path,
                    seek_frame_margin,
                    0,  # getPtsOnly
                    readVideoStream,
                    width,
                    height,
                    min_dimension,
486
                    max_dimension,
487
488
489
490
491
492
493
494
495
496
497
498
499
                    video_start_pts,
                    video_end_pts,
                    video_timebase_num,
                    video_timebase_den,
                    readAudioStream,
                    samples,
                    channels,
                    audio_start_pts,
                    audio_end_pts,
                    audio_timebase_num,
                    audio_timebase_den,
                )

500
501
502
503
504
505
506
507
508
509
510
511
                (
                    vframes,
                    vframe_pts,
                    vtimebase,
                    vfps,
                    vduration,
                    aframes,
                    aframe_pts,
                    atimebase,
                    asample_rate,
                    aduration,
                ) = tv_result
512

513
514
515
516
                assert (vframes.numel() > 0) is bool(readVideoStream)
                assert (vframe_pts.numel() > 0) is bool(readVideoStream)
                assert (vtimebase.numel() > 0) is bool(readVideoStream)
                assert (vfps.numel() > 0) is bool(readVideoStream)
517

518
                expect_audio_data = readAudioStream == 1 and config.audio_sample_rate is not None
519
520
521
522
                assert (aframes.numel() > 0) is bool(expect_audio_data)
                assert (aframe_pts.numel() > 0) is bool(expect_audio_data)
                assert (atimebase.numel() > 0) is bool(expect_audio_data)
                assert (asample_rate.numel() > 0) is bool(expect_audio_data)
523
524
525
526
527
528
529

    def test_read_video_from_file_rescale_min_dimension(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video min dimension between height and width is set.
        """
        # video related
530
        width, height, min_dimension, max_dimension = 0, 0, 128, 0
531
532
533
534
535
536
537
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

538
        for test_video, _config in test_videos.items():
539
540
541
542
543
544
545
546
547
548
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
549
                max_dimension,
550
551
552
553
554
555
556
557
558
559
560
561
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
562
            assert min_dimension == min(tv_result[0].size(1), tv_result[0].size(2))
563

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
    def test_read_video_from_file_rescale_max_dimension(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video min dimension between height and width is set.
        """
        # video related
        width, height, min_dimension, max_dimension = 0, 0, 0, 85
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, _config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
                max_dimension,
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
602
            assert max_dimension == max(tv_result[0].size(1), tv_result[0].size(2))
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

    def test_read_video_from_file_rescale_both_min_max_dimension(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video min dimension between height and width is set.
        """
        # video related
        width, height, min_dimension, max_dimension = 0, 0, 64, 85
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, _config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
                max_dimension,
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
642
643
            assert min_dimension == min(tv_result[0].size(1), tv_result[0].size(2))
            assert max_dimension == max(tv_result[0].size(1), tv_result[0].size(2))
644

645
646
647
648
649
650
    def test_read_video_from_file_rescale_width(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video width is set.
        """
        # video related
651
        width, height, min_dimension, max_dimension = 256, 0, 0, 0
652
653
654
655
656
657
658
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

659
        for test_video, _config in test_videos.items():
660
661
662
663
664
665
666
667
668
669
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
670
                max_dimension,
671
672
673
674
675
676
677
678
679
680
681
682
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
683
            assert tv_result[0].size(2) == width
684
685
686
687
688
689
690

    def test_read_video_from_file_rescale_height(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video height is set.
        """
        # video related
691
        width, height, min_dimension, max_dimension = 0, 224, 0, 0
692
693
694
695
696
697
698
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

699
        for test_video, _config in test_videos.items():
700
701
702
703
704
705
706
707
708
709
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
710
                max_dimension,
711
712
713
714
715
716
717
718
719
720
721
722
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
723
            assert tv_result[0].size(1) == height
724
725
726
727
728
729
730

    def test_read_video_from_file_rescale_width_and_height(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        both video height and width are set.
        """
        # video related
731
        width, height, min_dimension, max_dimension = 320, 240, 0, 0
732
733
734
735
736
737
738
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

739
        for test_video, _config in test_videos.items():
740
741
742
743
744
745
746
747
748
749
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
750
                max_dimension,
751
752
753
754
755
756
757
758
759
760
761
762
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
763
764
            assert tv_result[0].size(1) == height
            assert tv_result[0].size(2) == width
765
766
767
768
769
770
771

    def test_read_video_from_file_audio_resampling(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        audio waveform are resampled
        """

772
        for samples in [9600, 96000]:  # downsampling  # upsampling
773
            # video related
774
            width, height, min_dimension, max_dimension = 0, 0, 0, 0
775
776
777
778
779
780
781
            video_start_pts, video_end_pts = 0, -1
            video_timebase_num, video_timebase_den = 0, 1
            # audio related
            channels = 0
            audio_start_pts, audio_end_pts = 0, -1
            audio_timebase_num, audio_timebase_den = 0, 1

782
            for test_video, _config in test_videos.items():
783
784
785
786
787
788
789
790
791
792
                full_path = os.path.join(VIDEO_DIR, test_video)

                tv_result = torch.ops.video_reader.read_video_from_file(
                    full_path,
                    seek_frame_margin,
                    0,  # getPtsOnly
                    1,  # readVideoStream
                    width,
                    height,
                    min_dimension,
793
                    max_dimension,
794
795
796
797
798
799
800
801
802
803
804
805
                    video_start_pts,
                    video_end_pts,
                    video_timebase_num,
                    video_timebase_den,
                    1,  # readAudioStream
                    samples,
                    channels,
                    audio_start_pts,
                    audio_end_pts,
                    audio_timebase_num,
                    audio_timebase_den,
                )
806
807
808
809
810
811
812
813
814
815
816
817
                (
                    vframes,
                    vframe_pts,
                    vtimebase,
                    vfps,
                    vduration,
                    aframes,
                    aframe_pts,
                    atimebase,
                    asample_rate,
                    aduration,
                ) = tv_result
818
                if aframes.numel() > 0:
819
820
                    assert samples == asample_rate.item()
                    assert 1 == aframes.size(1)
821
                    # when audio stream is found
822
                    duration = float(aframe_pts[-1]) * float(atimebase[0]) / float(atimebase[1])
823
                    assert aframes.size(0) == approx(int(duration * asample_rate.item()), abs=0.1 * asample_rate.item())
824
825
826
827
828
829

    def test_compare_read_video_from_memory_and_file(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory
        """
        # video related
830
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)

            # pass 1: decode all frames using cpp decoder
            tv_result_memory = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
850
                max_dimension,
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            self.check_separate_decoding_result(tv_result_memory, config)
            # pass 2: decode all frames from file
            tv_result_file = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
873
                max_dimension,
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )

            self.check_separate_decoding_result(tv_result_file, config)
            # finally, compare results decoded from memory and file
            self.compare_decoding_result(tv_result_memory, tv_result_file)

    def test_read_video_from_memory(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory
        """
        # video related
896
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)

            # pass 1: decode all frames using cpp decoder
            tv_result = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
916
                max_dimension,
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            # pass 2: decode all frames using av
            pyav_result = _decode_frames_by_av_module(full_path)

            self.check_separate_decoding_result(tv_result, config)
            self.compare_decoding_result(tv_result, pyav_result, config)

    def test_read_video_from_memory_get_pts_only(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory.
        Compare frame pts between decoding for pts only and full decoding
        for both pts and frame data
        """
        # video related
942
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)

            # pass 1: decode all frames using cpp decoder
            tv_result = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
962
                max_dimension,
963
964
965
966
967
968
969
970
971
972
973
974
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
975
            assert abs(config.video_fps - tv_result[3].item()) < 0.01
976
977
978
979
980
981
982
983
984
985

            # pass 2: decode all frames to get PTS only using cpp decoder
            tv_result_pts_only = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                1,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
986
                max_dimension,
987
988
989
990
991
992
993
994
995
996
997
998
999
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )

1000
1001
            assert not tv_result_pts_only[0].numel()
            assert not tv_result_pts_only[5].numel()
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
            self.compare_decoding_result(tv_result, tv_result_pts_only)

    def test_read_video_in_range_from_memory(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory.
        In addition, decoder takes meaningful start- and end PTS as input, and decode
        frames within that interval
        """
        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)
            # video related
1013
            width, height, min_dimension, max_dimension = 0, 0, 0, 0
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
            video_start_pts, video_end_pts = 0, -1
            video_timebase_num, video_timebase_den = 0, 1
            # audio related
            samples, channels = 0, 0
            audio_start_pts, audio_end_pts = 0, -1
            audio_timebase_num, audio_timebase_den = 0, 1
            # pass 1: decode all frames using new decoder
            tv_result = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
1029
                max_dimension,
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
            (
                vframes,
                vframe_pts,
                vtimebase,
                vfps,
                vduration,
                aframes,
                aframe_pts,
                atimebase,
                asample_rate,
                aduration,
            ) = tv_result
1054
            assert abs(config.video_fps - vfps.item()) < 0.01
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

            for num_frames in [4, 8, 16, 32, 64, 128]:
                start_pts_ind_max = vframe_pts.size(0) - num_frames
                if start_pts_ind_max <= 0:
                    continue
                # randomly pick start pts
                start_pts_ind = randint(0, start_pts_ind_max)
                end_pts_ind = start_pts_ind + num_frames - 1
                video_start_pts = vframe_pts[start_pts_ind]
                video_end_pts = vframe_pts[end_pts_ind]

                video_timebase_num, video_timebase_den = vtimebase[0], vtimebase[1]
                if len(atimebase) > 0:
                    # when audio stream is available
                    audio_timebase_num, audio_timebase_den = atimebase[0], atimebase[1]
                    audio_start_pts = _pts_convert(
                        video_start_pts.item(),
                        Fraction(video_timebase_num.item(), video_timebase_den.item()),
                        Fraction(audio_timebase_num.item(), audio_timebase_den.item()),
                        math.floor,
                    )
                    audio_end_pts = _pts_convert(
                        video_end_pts.item(),
                        Fraction(video_timebase_num.item(), video_timebase_den.item()),
                        Fraction(audio_timebase_num.item(), audio_timebase_den.item()),
                        math.ceil,
                    )

                # pass 2: decode frames in the randomly generated range
                tv_result = torch.ops.video_reader.read_video_from_memory(
                    video_tensor,
                    seek_frame_margin,
                    0,  # getPtsOnly
                    1,  # readVideoStream
                    width,
                    height,
                    min_dimension,
1092
                    max_dimension,
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
                    video_start_pts,
                    video_end_pts,
                    video_timebase_num,
                    video_timebase_den,
                    1,  # readAudioStream
                    samples,
                    channels,
                    audio_start_pts,
                    audio_end_pts,
                    audio_timebase_num,
                    audio_timebase_den,
                )

                # pass 3: decode frames in range using PyAv
1107
                video_timebase_av, audio_timebase_av = _get_timebase_by_av_module(full_path)
1108
1109
1110
1111

                video_start_pts_av = _pts_convert(
                    video_start_pts.item(),
                    Fraction(video_timebase_num.item(), video_timebase_den.item()),
1112
                    Fraction(video_timebase_av.numerator, video_timebase_av.denominator),
1113
1114
1115
1116
1117
                    math.floor,
                )
                video_end_pts_av = _pts_convert(
                    video_end_pts.item(),
                    Fraction(video_timebase_num.item(), video_timebase_den.item()),
1118
                    Fraction(video_timebase_av.numerator, video_timebase_av.denominator),
1119
1120
1121
1122
1123
1124
                    math.ceil,
                )
                if audio_timebase_av:
                    audio_start_pts = _pts_convert(
                        video_start_pts.item(),
                        Fraction(video_timebase_num.item(), video_timebase_den.item()),
1125
                        Fraction(audio_timebase_av.numerator, audio_timebase_av.denominator),
1126
1127
1128
1129
1130
                        math.floor,
                    )
                    audio_end_pts = _pts_convert(
                        video_end_pts.item(),
                        Fraction(video_timebase_num.item(), video_timebase_den.item()),
1131
                        Fraction(audio_timebase_av.numerator, audio_timebase_av.denominator),
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
                        math.ceil,
                    )

                pyav_result = _decode_frames_by_av_module(
                    full_path,
                    video_start_pts_av,
                    video_end_pts_av,
                    audio_start_pts,
                    audio_end_pts,
                )

1143
                assert tv_result[0].size(0) == num_frames
1144
1145
1146
1147
1148
1149
                if pyav_result.vframes.size(0) == num_frames:
                    # if PyAv decodes a different number of video frames, skip
                    # comparing the decoding results between Torchvision video reader
                    # and PyAv
                    self.compare_decoding_result(tv_result, pyav_result, config)

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
    def test_probe_video_from_file(self):
        """
        Test the case when decoder probes a video file
        """
        for test_video, config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)
            probe_result = torch.ops.video_reader.probe_video_from_file(full_path)
            self.check_probe_result(probe_result, config)

    def test_probe_video_from_memory(self):
        """
        Test the case when decoder probes a video in memory
        """
        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)
            probe_result = torch.ops.video_reader.probe_video_from_memory(video_tensor)
            self.check_probe_result(probe_result, config)

1168
1169
    def test_probe_video_from_memory_script(self):
        scripted_fun = torch.jit.script(io._probe_video_from_memory)
1170
        assert scripted_fun is not None
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181

        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)
            probe_result = scripted_fun(video_tensor)
            self.check_meta_result(probe_result, config)

    def test_read_video_from_memory_scripted(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory
        """
        # video related
1182
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
1183
1184
1185
1186
1187
1188
1189
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

1190
        scripted_fun = torch.jit.script(io._read_video_from_memory)
1191
        assert scripted_fun is not None
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

        for test_video, _config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)

            # decode all frames using cpp decoder
            scripted_fun(
                video_tensor,
                seek_frame_margin,
                1,  # readVideoStream
                width,
                height,
                min_dimension,
1204
                max_dimension,
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
                [video_start_pts, video_end_pts],
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                [audio_start_pts, audio_end_pts],
                audio_timebase_num,
                audio_timebase_den,
            )
            # FUTURE: check value of video / audio frames

1217
    def test_invalid_file(self):
1218
        set_video_backend("video_reader")
1219
        with pytest.raises(RuntimeError):
1220
            io.read_video("foo.mp4")
1221

1222
        set_video_backend("pyav")
1223
        with pytest.raises(RuntimeError):
1224
            io.read_video("foo.mp4")
1225

1226
1227
    def test_audio_present_pts(self):
        """Test if audio frames are returned with pts unit."""
1228
        backends = ["video_reader", "pyav"]
1229
1230
1231
1232
1233
1234
        start_offsets = [0, 1000]
        end_offsets = [3000, None]
        for test_video, _ in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)
            container = av.open(full_path)
            if container.streams.audio:
1235
                for backend, start_offset, end_offset in itertools.product(backends, start_offsets, end_offsets):
1236
                    set_video_backend(backend)
1237
                    _, audio, _ = io.read_video(full_path, start_offset, end_offset, pts_unit="pts")
1238
                    assert all([dimension > 0 for dimension in audio.shape[:2]])
1239
1240
1241

    def test_audio_present_sec(self):
        """Test if audio frames are returned with sec unit."""
1242
        backends = ["video_reader", "pyav"]
1243
1244
        start_offsets = [0, 0.1]
        end_offsets = [0.3, None]
1245
1246
1247
1248
        for test_video, _ in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)
            container = av.open(full_path)
            if container.streams.audio:
1249
                for backend, start_offset, end_offset in itertools.product(backends, start_offsets, end_offsets):
1250
                    set_video_backend(backend)
1251
                    _, audio, _ = io.read_video(full_path, start_offset, end_offset, pts_unit="sec")
1252
                    assert all([dimension > 0 for dimension in audio.shape[:2]])
1253

1254

1255
if __name__ == "__main__":
1256
    pytest.main([__file__])