test_models_detection_utils.py 3.48 KB
Newer Older
1
import copy
2
3

import pytest
4
import torch
5
from common_utils import assert_equal
6
from torchvision.models.detection import _utils
7
from torchvision.models.detection import backbone_utils
8
from torchvision.models.detection.transform import GeneralizedRCNNTransform
9
10


11
class TestModelsDetectionUtils:
12
13
14
15
16
17
18
19
    def test_balanced_positive_negative_sampler(self):
        sampler = _utils.BalancedPositiveNegativeSampler(4, 0.25)
        # keep all 6 negatives first, then add 3 positives, last two are ignore
        matched_idxs = [torch.tensor([0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1])]
        pos, neg = sampler(matched_idxs)
        # we know the number of elements that should be sampled for the positive (1)
        # and the negative (3), and their location. Let's make sure that they are
        # there
20
21
22
23
        assert pos[0].sum() == 1
        assert pos[0][6:9].sum() == 1
        assert neg[0].sum() == 3
        assert neg[0][0:6].sum() == 3
24

25
    @pytest.mark.parametrize("train_layers, exp_froz_params", [(0, 53), (1, 43), (2, 24), (3, 11), (4, 1), (5, 0)])
26
    def test_resnet_fpn_backbone_frozen_layers(self, train_layers, exp_froz_params):
27
        # we know how many initial layers and parameters of the network should
28
        # be frozen for each trainable_backbone_layers parameter value
29
30
        # i.e all 53 params are frozen if trainable_backbone_layers=0
        # ad first 24 params are frozen if trainable_backbone_layers=2
31
        model = backbone_utils.resnet_fpn_backbone("resnet50", pretrained=False, trainable_layers=train_layers)
32
33
34
35
        # boolean list that is true if the param at that index is frozen
        is_frozen = [not parameter.requires_grad for _, parameter in model.named_parameters()]
        # check that expected initial number of layers are frozen
        assert all(is_frozen[:exp_froz_params])
36

37
38
    def test_validate_resnet_inputs_detection(self):
        # default number of backbone layers to train
39
        ret = backbone_utils._validate_trainable_layers(
40
41
            pretrained=True, trainable_backbone_layers=None, max_value=5, default_value=3
        )
42
        assert ret == 3
43
        # can't go beyond 5
44
        with pytest.raises(AssertionError):
45
            ret = backbone_utils._validate_trainable_layers(
46
47
                pretrained=True, trainable_backbone_layers=6, max_value=5, default_value=3
            )
48
        # if not pretrained, should use all trainable layers and warn
49
        with pytest.warns(UserWarning):
50
            ret = backbone_utils._validate_trainable_layers(
51
52
                pretrained=False, trainable_backbone_layers=0, max_value=5, default_value=3
            )
53
        assert ret == 5
54

55
56
57
    def test_transform_copy_targets(self):
        transform = GeneralizedRCNNTransform(300, 500, torch.zeros(3), torch.ones(3))
        image = [torch.rand(3, 200, 300), torch.rand(3, 200, 200)]
58
        targets = [{"boxes": torch.rand(3, 4)}, {"boxes": torch.rand(2, 4)}]
59
60
        targets_copy = copy.deepcopy(targets)
        out = transform(image, targets)  # noqa: F841
61
62
        assert_equal(targets[0]["boxes"], targets_copy[0]["boxes"])
        assert_equal(targets[1]["boxes"], targets_copy[1]["boxes"])
63

64
65
66
    def test_not_float_normalize(self):
        transform = GeneralizedRCNNTransform(300, 500, torch.zeros(3), torch.ones(3))
        image = [torch.randint(0, 255, (3, 200, 300), dtype=torch.uint8)]
67
        targets = [{"boxes": torch.rand(3, 4)}]
68
        with pytest.raises(TypeError):
69
70
            out = transform(image, targets)  # noqa: F841

71

72
if __name__ == "__main__":
73
    pytest.main([__file__])