Unverified Commit 59833e76 authored by Anirudh's avatar Anirudh Committed by GitHub
Browse files

port test_models_detection_utils.py to pytest (#4036)

parent e27b3925
......@@ -2,12 +2,13 @@ import copy
import torch
from torchvision.models.detection import _utils
from torchvision.models.detection.transform import GeneralizedRCNNTransform
import unittest
import pytest
from torchvision.models.detection import backbone_utils
from _assert_utils import assert_equal
class Tester(unittest.TestCase):
class TestModelsDetectionUtils:
def test_balanced_positive_negative_sampler(self):
sampler = _utils.BalancedPositiveNegativeSampler(4, 0.25)
# keep all 6 negatives first, then add 3 positives, last two are ignore
......@@ -16,39 +17,40 @@ class Tester(unittest.TestCase):
# we know the number of elements that should be sampled for the positive (1)
# and the negative (3), and their location. Let's make sure that they are
# there
self.assertEqual(pos[0].sum(), 1)
self.assertEqual(pos[0][6:9].sum(), 1)
self.assertEqual(neg[0].sum(), 3)
self.assertEqual(neg[0][0:6].sum(), 3)
assert pos[0].sum() == 1
assert pos[0][6:9].sum() == 1
assert neg[0].sum() == 3
assert neg[0][0:6].sum() == 3
def test_resnet_fpn_backbone_frozen_layers(self):
@pytest.mark.parametrize('train_layers, exp_froz_params', [
(0, 53), (1, 43), (2, 24), (3, 11), (4, 1), (5, 0)
])
def test_resnet_fpn_backbone_frozen_layers(self, train_layers, exp_froz_params):
# we know how many initial layers and parameters of the network should
# be frozen for each trainable_backbone_layers parameter value
# i.e all 53 params are frozen if trainable_backbone_layers=0
# ad first 24 params are frozen if trainable_backbone_layers=2
expected_frozen_params = {0: 53, 1: 43, 2: 24, 3: 11, 4: 1, 5: 0}
for train_layers, exp_froz_params in expected_frozen_params.items():
model = backbone_utils.resnet_fpn_backbone(
'resnet50', pretrained=False, trainable_layers=train_layers)
# boolean list that is true if the param at that index is frozen
is_frozen = [not parameter.requires_grad for _, parameter in model.named_parameters()]
# check that expected initial number of layers are frozen
self.assertTrue(all(is_frozen[:exp_froz_params]))
model = backbone_utils.resnet_fpn_backbone(
'resnet50', pretrained=False, trainable_layers=train_layers)
# boolean list that is true if the param at that index is frozen
is_frozen = [not parameter.requires_grad for _, parameter in model.named_parameters()]
# check that expected initial number of layers are frozen
assert all(is_frozen[:exp_froz_params])
def test_validate_resnet_inputs_detection(self):
# default number of backbone layers to train
ret = backbone_utils._validate_trainable_layers(
pretrained=True, trainable_backbone_layers=None, max_value=5, default_value=3)
self.assertEqual(ret, 3)
assert ret == 3
# can't go beyond 5
with self.assertRaises(AssertionError):
with pytest.raises(AssertionError):
ret = backbone_utils._validate_trainable_layers(
pretrained=True, trainable_backbone_layers=6, max_value=5, default_value=3)
# if not pretrained, should use all trainable layers and warn
with self.assertWarns(UserWarning):
with pytest.warns(UserWarning):
ret = backbone_utils._validate_trainable_layers(
pretrained=False, trainable_backbone_layers=0, max_value=5, default_value=3)
self.assertEqual(ret, 5)
assert ret == 5
def test_transform_copy_targets(self):
transform = GeneralizedRCNNTransform(300, 500, torch.zeros(3), torch.ones(3))
......@@ -63,9 +65,9 @@ class Tester(unittest.TestCase):
transform = GeneralizedRCNNTransform(300, 500, torch.zeros(3), torch.ones(3))
image = [torch.randint(0, 255, (3, 200, 300), dtype=torch.uint8)]
targets = [{'boxes': torch.rand(3, 4)}]
with self.assertRaises(TypeError):
with pytest.raises(TypeError):
out = transform(image, targets) # noqa: F841
if __name__ == '__main__':
unittest.main()
pytest.main([__file__])
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment