mnist.py 19.7 KB
Newer Older
Tian Qi Chen's avatar
Tian Qi Chen committed
1
from __future__ import print_function
2
from .vision import VisionDataset
3
import warnings
Tian Qi Chen's avatar
Tian Qi Chen committed
4
5
6
from PIL import Image
import os
import os.path
7
import numpy as np
Tian Qi Chen's avatar
Tian Qi Chen committed
8
9
import torch
import codecs
10
11
from .utils import download_url, download_and_extract_archive, extract_archive, \
    makedir_exist_ok, verify_str_arg
Tian Qi Chen's avatar
Tian Qi Chen committed
12

13

14
class MNIST(VisionDataset):
15
16
17
    """`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset.

    Args:
18
19
        root (string): Root directory of dataset where ``MNIST/processed/training.pt``
            and  ``MNIST/processed/test.pt`` exist.
20
21
22
23
24
25
26
27
28
29
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
30
31
32
33
34
35

    resources = [
        ("http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz", "f68b3c2dcbeaaa9fbdd348bbdeb94873"),
        ("http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz", "d53e105ee54ea40749a09fcbcd1e9432"),
        ("http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz", "9fb629c4189551a2d022fa330f9573f3"),
        ("http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz", "ec29112dd5afa0611ce80d1b7f02629c")
Tian Qi Chen's avatar
Tian Qi Chen committed
36
    ]
37

38
39
    training_file = 'training.pt'
    test_file = 'test.pt'
40
41
42
    classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
               '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    @property
    def train_labels(self):
        warnings.warn("train_labels has been renamed targets")
        return self.targets

    @property
    def test_labels(self):
        warnings.warn("test_labels has been renamed targets")
        return self.targets

    @property
    def train_data(self):
        warnings.warn("train_data has been renamed data")
        return self.data

    @property
    def test_data(self):
        warnings.warn("test_data has been renamed data")
        return self.data

63
64
65
66
    def __init__(self, root, train=True, transform=None, target_transform=None,
                 download=False):
        super(MNIST, self).__init__(root, transform=transform,
                                    target_transform=target_transform)
67
        self.train = train  # training set or test set
Tian Qi Chen's avatar
Tian Qi Chen committed
68
69
70
71
72

        if download:
            self.download()

        if not self._check_exists():
73
74
            raise RuntimeError('Dataset not found.' +
                               ' You can use download=True to download it')
Tian Qi Chen's avatar
Tian Qi Chen committed
75
76

        if self.train:
77
            data_file = self.training_file
Tian Qi Chen's avatar
Tian Qi Chen committed
78
        else:
79
80
            data_file = self.test_file
        self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file))
Tian Qi Chen's avatar
Tian Qi Chen committed
81
82

    def __getitem__(self, index):
83
84
85
86
87
88
89
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
90
        img, target = self.data[index], int(self.targets[index])
Tian Qi Chen's avatar
Tian Qi Chen committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img.numpy(), mode='L')

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
105
        return len(self.data)
Tian Qi Chen's avatar
Tian Qi Chen committed
106

107
108
109
110
111
112
113
114
115
116
117
118
    @property
    def raw_folder(self):
        return os.path.join(self.root, self.__class__.__name__, 'raw')

    @property
    def processed_folder(self):
        return os.path.join(self.root, self.__class__.__name__, 'processed')

    @property
    def class_to_idx(self):
        return {_class: i for i, _class in enumerate(self.classes)}

Tian Qi Chen's avatar
Tian Qi Chen committed
119
    def _check_exists(self):
120
121
122
123
        return (os.path.exists(os.path.join(self.processed_folder,
                                            self.training_file)) and
                os.path.exists(os.path.join(self.processed_folder,
                                            self.test_file)))
124

Tian Qi Chen's avatar
Tian Qi Chen committed
125
    def download(self):
126
        """Download the MNIST data if it doesn't exist in processed_folder already."""
Tian Qi Chen's avatar
Tian Qi Chen committed
127
128
129
130

        if self._check_exists():
            return

131
132
        makedir_exist_ok(self.raw_folder)
        makedir_exist_ok(self.processed_folder)
Tian Qi Chen's avatar
Tian Qi Chen committed
133

134
        # download files
135
        for url, md5 in self.resources:
Tian Qi Chen's avatar
Tian Qi Chen committed
136
            filename = url.rpartition('/')[2]
137
            download_and_extract_archive(url, download_root=self.raw_folder, filename=filename, md5=md5)
Tian Qi Chen's avatar
Tian Qi Chen committed
138
139

        # process and save as torch files
Adam Paszke's avatar
Adam Paszke committed
140
141
        print('Processing...')

Tian Qi Chen's avatar
Tian Qi Chen committed
142
        training_set = (
143
144
            read_image_file(os.path.join(self.raw_folder, 'train-images-idx3-ubyte')),
            read_label_file(os.path.join(self.raw_folder, 'train-labels-idx1-ubyte'))
Tian Qi Chen's avatar
Tian Qi Chen committed
145
146
        )
        test_set = (
147
148
            read_image_file(os.path.join(self.raw_folder, 't10k-images-idx3-ubyte')),
            read_label_file(os.path.join(self.raw_folder, 't10k-labels-idx1-ubyte'))
Tian Qi Chen's avatar
Tian Qi Chen committed
149
        )
150
        with open(os.path.join(self.processed_folder, self.training_file), 'wb') as f:
Tian Qi Chen's avatar
Tian Qi Chen committed
151
            torch.save(training_set, f)
152
        with open(os.path.join(self.processed_folder, self.test_file), 'wb') as f:
Tian Qi Chen's avatar
Tian Qi Chen committed
153
154
155
156
            torch.save(test_set, f)

        print('Done!')

157
158
    def extra_repr(self):
        return "Split: {}".format("Train" if self.train is True else "Test")
159

160

161
class FashionMNIST(MNIST):
162
163
164
    """`Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset.

    Args:
165
166
        root (string): Root directory of dataset where ``Fashion-MNIST/processed/training.pt``
            and  ``Fashion-MNIST/processed/test.pt`` exist.
167
168
169
170
171
172
173
174
175
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
176
    """
177
178
179
180
181
182
183
184
185
    resources = [
        ("http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz",
         "8d4fb7e6c68d591d4c3dfef9ec88bf0d"),
        ("http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz",
         "25c81989df183df01b3e8a0aad5dffbe"),
        ("http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz",
         "bef4ecab320f06d8554ea6380940ec79"),
        ("http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz",
         "bb300cfdad3c16e7a12a480ee83cd310")
186
    ]
187
188
    classes = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal',
               'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
189
190


hysts's avatar
hysts committed
191
192
193
194
class KMNIST(MNIST):
    """`Kuzushiji-MNIST <https://github.com/rois-codh/kmnist>`_ Dataset.

    Args:
195
196
        root (string): Root directory of dataset where ``KMNIST/processed/training.pt``
            and  ``KMNIST/processed/test.pt`` exist.
hysts's avatar
hysts committed
197
198
199
200
201
202
203
204
205
206
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
207
208
209
210
211
    resources = [
        ("http://codh.rois.ac.jp/kmnist/dataset/kmnist/train-images-idx3-ubyte.gz", "bdb82020997e1d708af4cf47b453dcf7"),
        ("http://codh.rois.ac.jp/kmnist/dataset/kmnist/train-labels-idx1-ubyte.gz", "e144d726b3acfaa3e44228e80efcd344"),
        ("http://codh.rois.ac.jp/kmnist/dataset/kmnist/t10k-images-idx3-ubyte.gz", "5c965bf0a639b31b8f53240b1b52f4d7"),
        ("http://codh.rois.ac.jp/kmnist/dataset/kmnist/t10k-labels-idx1-ubyte.gz", "7320c461ea6c1c855c0b718fb2a4b134")
hysts's avatar
hysts committed
212
213
214
215
    ]
    classes = ['o', 'ki', 'su', 'tsu', 'na', 'ha', 'ma', 'ya', 're', 'wo']


216
class EMNIST(MNIST):
Alex Alemi's avatar
Alex Alemi committed
217
    """`EMNIST <https://www.westernsydney.edu.au/bens/home/reproducible_research/emnist>`_ Dataset.
218
219

    Args:
220
221
        root (string): Root directory of dataset where ``EMNIST/processed/training.pt``
            and  ``EMNIST/processed/test.pt`` exist.
222
223
224
225
226
227
228
229
230
231
232
233
234
        split (string): The dataset has 6 different splits: ``byclass``, ``bymerge``,
            ``balanced``, ``letters``, ``digits`` and ``mnist``. This argument specifies
            which one to use.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
Philip Meier's avatar
Philip Meier committed
235
236
237
238
239
    # Updated URL from https://www.nist.gov/node/1298471/emnist-dataset since the
    # _official_ download link
    # https://cloudstor.aarnet.edu.au/plus/s/ZNmuFiuQTqZlu9W/download
    # is (currently) unavailable
    url = 'http://www.itl.nist.gov/iaui/vip/cs_links/EMNIST/gzip.zip'
240
    md5 = "58c8d27c78d21e728a6bc7b3cc06412e"
241
242
243
    splits = ('byclass', 'bymerge', 'balanced', 'letters', 'digits', 'mnist')

    def __init__(self, root, split, **kwargs):
244
        self.split = verify_str_arg(split, "split", self.splits)
245
246
247
        self.training_file = self._training_file(split)
        self.test_file = self._test_file(split)
        super(EMNIST, self).__init__(root, **kwargs)
Tian Qi Chen's avatar
Tian Qi Chen committed
248

249
250
    @staticmethod
    def _training_file(split):
251
252
        return 'training_{}.pt'.format(split)

253
254
    @staticmethod
    def _test_file(split):
255
256
257
258
259
        return 'test_{}.pt'.format(split)

    def download(self):
        """Download the EMNIST data if it doesn't exist in processed_folder already."""
        import shutil
260

261
262
263
        if self._check_exists():
            return

264
265
        makedir_exist_ok(self.raw_folder)
        makedir_exist_ok(self.processed_folder)
266

267
        # download files
268
        print('Downloading and extracting zip archive')
269
        download_and_extract_archive(self.url, download_root=self.raw_folder, filename="emnist.zip",
270
                                     remove_finished=True, md5=self.md5)
271
        gzip_folder = os.path.join(self.raw_folder, 'gzip')
272
273
        for gzip_file in os.listdir(gzip_folder):
            if gzip_file.endswith('.gz'):
274
                extract_archive(os.path.join(gzip_folder, gzip_file), gzip_folder)
275
276
277
278
279

        # process and save as torch files
        for split in self.splits:
            print('Processing ' + split)
            training_set = (
280
281
                read_image_file(os.path.join(gzip_folder, 'emnist-{}-train-images-idx3-ubyte'.format(split))),
                read_label_file(os.path.join(gzip_folder, 'emnist-{}-train-labels-idx1-ubyte'.format(split)))
282
283
            )
            test_set = (
284
285
                read_image_file(os.path.join(gzip_folder, 'emnist-{}-test-images-idx3-ubyte'.format(split))),
                read_label_file(os.path.join(gzip_folder, 'emnist-{}-test-labels-idx1-ubyte'.format(split)))
286
            )
287
            with open(os.path.join(self.processed_folder, self._training_file(split)), 'wb') as f:
288
                torch.save(training_set, f)
289
            with open(os.path.join(self.processed_folder, self._test_file(split)), 'wb') as f:
290
                torch.save(test_set, f)
291
        shutil.rmtree(gzip_folder)
292
293
294
295

        print('Done!')


296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
class QMNIST(MNIST):
    """`QMNIST <https://github.com/facebookresearch/qmnist>`_ Dataset.

    Args:
        root (string): Root directory of dataset whose ``processed''
            subdir contains torch binary files with the datasets.
        what (string,optional): Can be 'train', 'test', 'test10k',
            'test50k', or 'nist' for respectively the mnist compatible
            training set, the 60k qmnist testing set, the 10k qmnist
            examples that match the mnist testing set, the 50k
            remaining qmnist testing examples, or all the nist
            digits. The default is to select 'train' or 'test'
            according to the compatibility argument 'train'.
        compat (bool,optional): A boolean that says whether the target
            for each example is class number (for compatibility with
            the MNIST dataloader) or a torch vector containing the
            full qmnist information. Default=True.
        download (bool, optional): If true, downloads the dataset from
            the internet and puts it in root directory. If dataset is
            already downloaded, it is not downloaded again.
        transform (callable, optional): A function/transform that
            takes in an PIL image and returns a transformed
            version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform
            that takes in the target and transforms it.
        train (bool,optional,compatibility): When argument 'what' is
            not specified, this boolean decides whether to load the
            training set ot the testing set.  Default: True.

    """

    subsets = {
        'train': 'train',
329
330
331
        'test': 'test',
        'test10k': 'test',
        'test50k': 'test',
332
333
        'nist': 'nist'
    }
334
335
336
337
338
339
340
341
342
343
344
345
346
    resources = {
        'train': [('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-images-idx3-ubyte.gz',
                   'ed72d4157d28c017586c42bc6afe6370'),
                  ('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-labels-idx2-int.gz',
                   '0058f8dd561b90ffdd0f734c6a30e5e4')],
        'test': [('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-images-idx3-ubyte.gz',
                  '1394631089c404de565df7b7aeaf9412'),
                 ('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-labels-idx2-int.gz',
                  '5b5b05890a5e13444e108efe57b788aa')],
        'nist': [('https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-images-idx3-ubyte.xz',
                  '7f124b3b8ab81486c9d8c2749c17f834'),
                 ('https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-labels-idx2-int.xz',
                  '5ed0e788978e45d4a8bd4b7caec3d79d')]
347
348
349
350
351
352
353
    }
    classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
               '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']

    def __init__(self, root, what=None, compat=True, train=True, **kwargs):
        if what is None:
            what = 'train' if train else 'test'
354
        self.what = verify_str_arg(what, "what", tuple(self.subsets.keys()))
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        self.compat = compat
        self.data_file = what + '.pt'
        self.training_file = self.data_file
        self.test_file = self.data_file
        super(QMNIST, self).__init__(root, train, **kwargs)

    def download(self):
        """Download the QMNIST data if it doesn't exist in processed_folder already.
           Note that we only download what has been asked for (argument 'what').
        """
        if self._check_exists():
            return
        makedir_exist_ok(self.raw_folder)
        makedir_exist_ok(self.processed_folder)
369
        split = self.resources[self.subsets[self.what]]
370
371
372
        files = []

        # download data files if not already there
373
        for url, md5 in split:
374
375
376
            filename = url.rpartition('/')[2]
            file_path = os.path.join(self.raw_folder, filename)
            if not os.path.isfile(file_path):
377
                download_url(url, root=self.raw_folder, filename=filename, md5=md5)
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
            files.append(file_path)

        # process and save as torch files
        print('Processing...')
        data = read_sn3_pascalvincent_tensor(files[0])
        assert(data.dtype == torch.uint8)
        assert(data.ndimension() == 3)
        targets = read_sn3_pascalvincent_tensor(files[1]).long()
        assert(targets.ndimension() == 2)
        if self.what == 'test10k':
            data = data[0:10000, :, :].clone()
            targets = targets[0:10000, :].clone()
        if self.what == 'test50k':
            data = data[10000:, :, :].clone()
            targets = targets[10000:, :].clone()
        with open(os.path.join(self.processed_folder, self.data_file), 'wb') as f:
            torch.save((data, targets), f)

    def __getitem__(self, index):
        # redefined to handle the compat flag
        img, target = self.data[index], self.targets[index]
        img = Image.fromarray(img.numpy(), mode='L')
        if self.transform is not None:
            img = self.transform(img)
        if self.compat:
            target = int(target[0])
        if self.target_transform is not None:
            target = self.target_transform(target)
        return img, target

    def extra_repr(self):
        return "Split: {}".format(self.what)


412
413
def get_int(b):
    return int(codecs.encode(b, 'hex'), 16)
Tian Qi Chen's avatar
Tian Qi Chen committed
414

415

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
def open_maybe_compressed_file(path):
    """Return a file object that possibly decompresses 'path' on the fly.
       Decompression occurs when argument `path` is a string and ends with '.gz' or '.xz'.
    """
    if not isinstance(path, torch._six.string_classes):
        return path
    if path.endswith('.gz'):
        import gzip
        return gzip.open(path, 'rb')
    if path.endswith('.xz'):
        import lzma
        return lzma.open(path, 'rb')
    return open(path, 'rb')


def read_sn3_pascalvincent_tensor(path, strict=True):
    """Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-io.lsh').
       Argument may be a filename, compressed filename, or file object.
    """
    # typemap
    if not hasattr(read_sn3_pascalvincent_tensor, 'typemap'):
        read_sn3_pascalvincent_tensor.typemap = {
            8: (torch.uint8, np.uint8, np.uint8),
            9: (torch.int8, np.int8, np.int8),
            11: (torch.int16, np.dtype('>i2'), 'i2'),
            12: (torch.int32, np.dtype('>i4'), 'i4'),
            13: (torch.float32, np.dtype('>f4'), 'f4'),
            14: (torch.float64, np.dtype('>f8'), 'f8')}
    # read
    with open_maybe_compressed_file(path) as f:
        data = f.read()
    # parse
    magic = get_int(data[0:4])
    nd = magic % 256
    ty = magic // 256
    assert nd >= 1 and nd <= 3
    assert ty >= 8 and ty <= 14
    m = read_sn3_pascalvincent_tensor.typemap[ty]
    s = [get_int(data[4 * (i + 1): 4 * (i + 2)]) for i in range(nd)]
    parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1)))
    assert parsed.shape[0] == np.prod(s) or not strict
    return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)


Tian Qi Chen's avatar
Tian Qi Chen committed
460
461
def read_label_file(path):
    with open(path, 'rb') as f:
462
463
464
465
        x = read_sn3_pascalvincent_tensor(f, strict=False)
    assert(x.dtype == torch.uint8)
    assert(x.ndimension() == 1)
    return x.long()
Tian Qi Chen's avatar
Tian Qi Chen committed
466

467

Tian Qi Chen's avatar
Tian Qi Chen committed
468
469
def read_image_file(path):
    with open(path, 'rb') as f:
470
471
472
473
        x = read_sn3_pascalvincent_tensor(f, strict=False)
    assert(x.dtype == torch.uint8)
    assert(x.ndimension() == 3)
    return x