train.py 10.6 KB
Newer Older
flauted's avatar
flauted committed
1
2
3
4
5
6
7
r"""PyTorch Detection Training.

To run in a multi-gpu environment, use the distributed launcher::

    python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
        train.py ... --world-size $NGPU

8
9
10
The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
    --lr 0.02 --batch-size 2 --world-size 8
If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
11
12
13
14
15
16
17
18

On top of that, for training Faster/Mask R-CNN, the default hyperparameters are
    --epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3

Also, if you train Keypoint R-CNN, the default hyperparameters are
    --epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3
Because the number of images is smaller in the person keypoint subset of COCO,
the number of epochs should be adapted so that we have the same number of iterations.
flauted's avatar
flauted committed
19
"""
20
21
22
23
import datetime
import os
import time

24
import presets
25
26
27
28
29
import torch
import torch.utils.data
import torchvision
import torchvision.models.detection
import torchvision.models.detection.mask_rcnn
30
import utils
31
32
from coco_utils import get_coco, get_coco_kp
from engine import train_one_epoch, evaluate
33
from group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
34
35


36
37
38
39
40
41
try:
    from torchvision.prototype import models as PM
except ImportError:
    PM = None


flauted's avatar
flauted committed
42
def get_dataset(name, image_set, transform, data_path):
43
    paths = {"coco": (data_path, get_coco, 91), "coco_kp": (data_path, get_coco_kp, 2)}
44
45
46
47
48
49
    p, ds_fn, num_classes = paths[name]

    ds = ds_fn(p, image_set=image_set, transforms=transform)
    return ds, num_classes


50
51
52
53
54
55
56
57
58
def get_transform(train, args):
    if train:
        return presets.DetectionPresetTrain(args.data_augmentation)
    elif not args.weights:
        return presets.DetectionPresetEval()
    else:
        fn = PM.detection.__dict__[args.model]
        weights = PM._api.get_weight(fn, args.weights)
        return weights.transforms()
59
60


61
62
def get_args_parser(add_help=True):
    import argparse
63
64
65

    parser = argparse.ArgumentParser(description="PyTorch Detection Training", add_help=add_help)

66
67
68
69
    parser.add_argument("--data-path", default="/datasets01/COCO/022719/", type=str, help="dataset path")
    parser.add_argument("--dataset", default="coco", type=str, help="dataset name")
    parser.add_argument("--model", default="maskrcnn_resnet50_fpn", type=str, help="model name")
    parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
70
71
72
73
74
75
76
77
78
79
80
    parser.add_argument(
        "-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
    )
    parser.add_argument("--epochs", default=26, type=int, metavar="N", help="number of total epochs to run")
    parser.add_argument(
        "-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers (default: 4)"
    )
    parser.add_argument(
        "--lr",
        default=0.02,
        type=float,
81
        help="initial learning rate, 0.02 is the default value for training on 8 gpus and 2 images_per_gpu",
82
83
84
85
86
87
88
89
90
91
92
    )
    parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
    parser.add_argument(
        "--wd",
        "--weight-decay",
        default=1e-4,
        type=float,
        metavar="W",
        help="weight decay (default: 1e-4)",
        dest="weight_decay",
    )
93
94
95
    parser.add_argument(
        "--lr-scheduler", default="multisteplr", type=str, help="name of lr scheduler (default: multisteplr)"
    )
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    parser.add_argument(
        "--lr-step-size", default=8, type=int, help="decrease lr every step-size epochs (multisteplr scheduler only)"
    )
    parser.add_argument(
        "--lr-steps",
        default=[16, 22],
        nargs="+",
        type=int,
        help="decrease lr every step-size epochs (multisteplr scheduler only)",
    )
    parser.add_argument(
        "--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma (multisteplr scheduler only)"
    )
    parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
110
111
    parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
    parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
112
113
114
115
116
117
    parser.add_argument("--start_epoch", default=0, type=int, help="start epoch")
    parser.add_argument("--aspect-ratio-group-factor", default=3, type=int)
    parser.add_argument("--rpn-score-thresh", default=None, type=float, help="rpn score threshold for faster-rcnn")
    parser.add_argument(
        "--trainable-backbone-layers", default=None, type=int, help="number of trainable layers of backbone"
    )
118
119
120
    parser.add_argument(
        "--data-augmentation", default="hflip", type=str, help="data augmentation policy (default: hflip)"
    )
121
122
123
124
125
126
    parser.add_argument(
        "--sync-bn",
        dest="sync_bn",
        help="Use sync batch norm",
        action="store_true",
    )
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )
    parser.add_argument(
        "--pretrained",
        dest="pretrained",
        help="Use pre-trained models from the modelzoo",
        action="store_true",
    )

    # distributed training parameters
141
    parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
142
    parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
143

144
145
146
    # Prototype models only
    parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")

147
148
149
    # Mixed precision training parameters
    parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training")

150
151
152
    return parser


153
def main(args):
154
155
    if args.weights and PM is None:
        raise ImportError("The prototype module couldn't be found. Please install the latest torchvision nightly.")
156
157
158
    if args.output_dir:
        utils.mkdir(args.output_dir)

159
160
161
162
163
164
165
166
    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

    # Data loading code
    print("Loading data")

167
168
    dataset, num_classes = get_dataset(args.dataset, "train", get_transform(True, args), args.data_path)
    dataset_test, _ = get_dataset(args.dataset, "val", get_transform(False, args), args.data_path)
169
170
171
172
173
174
175
176
177
178
179
180
181

    print("Creating data loaders")
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    if args.aspect_ratio_group_factor >= 0:
        group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
        train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
    else:
182
        train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, args.batch_size, drop_last=True)
183
184

    data_loader = torch.utils.data.DataLoader(
185
186
        dataset, batch_sampler=train_batch_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
    )
187
188

    data_loader_test = torch.utils.data.DataLoader(
189
190
        dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
    )
191
192

    print("Creating model")
193
    kwargs = {"trainable_backbone_layers": args.trainable_backbone_layers}
194
    if "rcnn" in args.model:
195
196
        if args.rpn_score_thresh is not None:
            kwargs["rpn_score_thresh"] = args.rpn_score_thresh
197
198
199
200
201
202
    if not args.weights:
        model = torchvision.models.detection.__dict__[args.model](
            pretrained=args.pretrained, num_classes=num_classes, **kwargs
        )
    else:
        model = PM.detection.__dict__[args.model](weights=args.weights, num_classes=num_classes, **kwargs)
203
    model.to(device)
204
205
    if args.distributed and args.sync_bn:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
206
207
208
209
210
211
212

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

    params = [p for p in model.parameters() if p.requires_grad]
213
    optimizer = torch.optim.SGD(params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
214

215
216
    scaler = torch.cuda.amp.GradScaler() if args.amp else None

217
    args.lr_scheduler = args.lr_scheduler.lower()
218
    if args.lr_scheduler == "multisteplr":
219
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
220
    elif args.lr_scheduler == "cosineannealinglr":
221
222
        lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
    else:
223
        raise RuntimeError(
224
            f"Invalid lr scheduler '{args.lr_scheduler}'. Only MultiStepLR and CosineAnnealingLR are supported."
225
        )
Francisco Massa's avatar
Francisco Massa committed
226

227
    if args.resume:
228
229
230
231
232
        checkpoint = torch.load(args.resume, map_location="cpu")
        model_without_ddp.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
        args.start_epoch = checkpoint["epoch"] + 1
233
234
        if args.amp:
            scaler.load_state_dict(checkpoint["scaler"])
Francisco Massa's avatar
Francisco Massa committed
235

236
237
238
239
240
241
    if args.test_only:
        evaluate(model, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
MultiK's avatar
MultiK committed
242
    for epoch in range(args.start_epoch, args.epochs):
243
244
        if args.distributed:
            train_sampler.set_epoch(epoch)
245
        train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq, scaler)
246
247
        lr_scheduler.step()
        if args.output_dir:
248
            checkpoint = {
249
250
251
252
253
                "model": model_without_ddp.state_dict(),
                "optimizer": optimizer.state_dict(),
                "lr_scheduler": lr_scheduler.state_dict(),
                "args": args,
                "epoch": epoch,
254
            }
255
256
            if args.amp:
                checkpoint["scaler"] = scaler.state_dict()
257
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
258
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
259
260
261
262
263
264

        # evaluate after every epoch
        evaluate(model, data_loader_test, device=device)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
265
    print(f"Training time {total_time_str}")
266
267
268


if __name__ == "__main__":
269
    args = get_args_parser().parse_args()
270
    main(args)