test_transforms_v2.py 21.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import itertools
import random

import numpy as np

import PIL.Image
import pytest
import torch
import torchvision.transforms.v2 as transforms

11
from common_utils import assert_equal, cpu_and_cuda
12
from torchvision import tv_tensors
13
14
from torchvision.ops.boxes import box_iou
from torchvision.transforms.functional import to_pil_image
15
16
from torchvision.transforms.v2._utils import is_pure_tensor
from transforms_v2_legacy_utils import make_bounding_boxes, make_detection_mask, make_image, make_images, make_videos
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58


def make_vanilla_tensor_images(*args, **kwargs):
    for image in make_images(*args, **kwargs):
        if image.ndim > 3:
            continue
        yield image.data


def make_pil_images(*args, **kwargs):
    for image in make_vanilla_tensor_images(*args, **kwargs):
        yield to_pil_image(image)


def parametrize(transforms_with_inputs):
    return pytest.mark.parametrize(
        ("transform", "input"),
        [
            pytest.param(
                transform,
                input,
                id=f"{type(transform).__name__}-{type(input).__module__}.{type(input).__name__}-{idx}",
            )
            for transform, inputs in transforms_with_inputs
            for idx, input in enumerate(inputs)
        ],
    )


@pytest.mark.parametrize(
    "flat_inputs",
    itertools.permutations(
        [
            next(make_vanilla_tensor_images()),
            next(make_vanilla_tensor_images()),
            next(make_pil_images()),
            make_image(),
            next(make_videos()),
        ],
        3,
    ),
)
59
60
def test_pure_tensor_heuristic(flat_inputs):
    def split_on_pure_tensor(to_split):
61
        # This takes a sequence that is structurally aligned with `flat_inputs` and splits its items into three parts:
62
63
        # 1. The first pure tensor. If none is present, this will be `None`
        # 2. A list of the remaining pure tensors
64
        # 3. A list of all other items
65
        pure_tensors = []
66
67
68
69
        others = []
        # Splitting always happens on the original `flat_inputs` to avoid any erroneous type changes by the transform to
        # affect the splitting.
        for item, inpt in zip(to_split, flat_inputs):
70
71
            (pure_tensors if is_pure_tensor(inpt) else others).append(item)
        return pure_tensors[0] if pure_tensors else None, pure_tensors[1:], others
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

    class CopyCloneTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt.clone() if isinstance(inpt, torch.Tensor) else inpt.copy()

        @staticmethod
        def was_applied(output, inpt):
            identity = output is inpt
            if identity:
                return False

            # Make sure nothing fishy is going on
            assert_equal(output, inpt)
            return True

87
    first_pure_tensor_input, other_pure_tensor_inputs, other_inputs = split_on_pure_tensor(flat_inputs)
88
89
90
91

    transform = CopyCloneTransform()
    transformed_sample = transform(flat_inputs)

92
    first_pure_tensor_output, other_pure_tensor_outputs, other_outputs = split_on_pure_tensor(transformed_sample)
93

94
    if first_pure_tensor_input is not None:
95
        if other_inputs:
96
            assert not transform.was_applied(first_pure_tensor_output, first_pure_tensor_input)
97
        else:
98
            assert transform.was_applied(first_pure_tensor_output, first_pure_tensor_input)
99

100
    for output, inpt in zip(other_pure_tensor_outputs, other_pure_tensor_inputs):
101
102
103
104
105
106
107
108
109
        assert not transform.was_applied(output, inpt)

    for input, output in zip(other_inputs, other_outputs):
        assert transform.was_applied(output, input)


class TestTransform:
    @pytest.mark.parametrize(
        "inpt_type",
110
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    )
    def test_check_transformed_types(self, inpt_type, mocker):
        # This test ensures that we correctly handle which types to transform and which to bypass
        t = transforms.Transform()
        inpt = mocker.MagicMock(spec=inpt_type)

        if inpt_type in (np.ndarray, str, int):
            output = t(inpt)
            assert output is inpt
        else:
            with pytest.raises(NotImplementedError):
                t(inpt)


class TestContainers:
    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    def test_assertions(self, transform_cls):
        with pytest.raises(TypeError, match="Argument transforms should be a sequence of callables"):
            transform_cls(transforms.RandomCrop(28))

    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    @pytest.mark.parametrize(
        "trfms",
        [
            [transforms.Pad(2), transforms.RandomCrop(28)],
            [lambda x: 2.0 * x, transforms.Pad(2), transforms.RandomCrop(28)],
            [transforms.Pad(2), lambda x: 2.0 * x, transforms.RandomCrop(28)],
        ],
    )
    def test_ctor(self, transform_cls, trfms):
        c = transform_cls(trfms)
        inpt = torch.rand(1, 3, 32, 32)
        output = c(inpt)
        assert isinstance(output, torch.Tensor)
        assert output.ndim == 4


class TestRandomChoice:
    def test_assertions(self):
150
        with pytest.raises(ValueError, match="Length of p doesn't match the number of transforms"):
151
            transforms.RandomChoice([transforms.Pad(2), transforms.RandomCrop(28)], p=[1])
152
153
154


class TestRandomIoUCrop:
155
    @pytest.mark.parametrize("device", cpu_and_cuda())
156
    @pytest.mark.parametrize("options", [[0.5, 0.9], [2.0]])
Philip Meier's avatar
Philip Meier committed
157
158
159
    def test__get_params(self, device, options):
        orig_h, orig_w = size = (24, 32)
        image = make_image(size)
160
        bboxes = tv_tensors.BoundingBoxes(
161
162
            torch.tensor([[1, 1, 10, 10], [20, 20, 23, 23], [1, 20, 10, 23], [20, 1, 23, 10]]),
            format="XYXY",
Philip Meier's avatar
Philip Meier committed
163
            canvas_size=size,
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
            device=device,
        )
        sample = [image, bboxes]

        transform = transforms.RandomIoUCrop(sampler_options=options)

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params(sample)

            if options == [2.0]:
                assert len(params) == 0
                return

            assert len(params["is_within_crop_area"]) > 0
            assert params["is_within_crop_area"].dtype == torch.bool

            assert int(transform.min_scale * orig_h) <= params["height"] <= int(transform.max_scale * orig_h)
            assert int(transform.min_scale * orig_w) <= params["width"] <= int(transform.max_scale * orig_w)

            left, top = params["left"], params["top"]
            new_h, new_w = params["height"], params["width"]
            ious = box_iou(
                bboxes,
                torch.tensor([[left, top, left + new_w, top + new_h]], dtype=bboxes.dtype, device=bboxes.device),
            )
            assert ious.max() >= options[0] or ious.max() >= options[1], f"{ious} vs {options}"

    def test__transform_empty_params(self, mocker):
        transform = transforms.RandomIoUCrop(sampler_options=[2.0])
195
196
        image = tv_tensors.Image(torch.rand(1, 3, 4, 4))
        bboxes = tv_tensors.BoundingBoxes(torch.tensor([[1, 1, 2, 2]]), format="XYXY", canvas_size=(4, 4))
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        label = torch.tensor([1])
        sample = [image, bboxes, label]
        # Let's mock transform._get_params to control the output:
        transform._get_params = mocker.MagicMock(return_value={})
        output = transform(sample)
        torch.testing.assert_close(output, sample)

    def test_forward_assertion(self):
        transform = transforms.RandomIoUCrop()
        with pytest.raises(
            TypeError,
            match="requires input sample to contain tensor or PIL images and bounding boxes",
        ):
            transform(torch.tensor(0))

    def test__transform(self, mocker):
        transform = transforms.RandomIoUCrop()

Philip Meier's avatar
Philip Meier committed
215
216
        size = (32, 24)
        image = make_image(size)
217
        bboxes = make_bounding_boxes(format="XYXY", canvas_size=size, batch_dims=(6,))
Philip Meier's avatar
Philip Meier committed
218
        masks = make_detection_mask(size, num_objects=6)
219
220
221
222
223
224
225
226
227
228
229

        sample = [image, bboxes, masks]

        is_within_crop_area = torch.tensor([0, 1, 0, 1, 0, 1], dtype=torch.bool)

        params = dict(top=1, left=2, height=12, width=12, is_within_crop_area=is_within_crop_area)
        transform._get_params = mocker.MagicMock(return_value=params)
        output = transform(sample)

        # check number of bboxes vs number of labels:
        output_bboxes = output[1]
230
        assert isinstance(output_bboxes, tv_tensors.BoundingBoxes)
231
232
233
        assert (output_bboxes[~is_within_crop_area] == 0).all()

        output_masks = output[2]
234
        assert isinstance(output_masks, tv_tensors.Mask)
235
236
237
238


class TestRandomShortestSize:
    @pytest.mark.parametrize("min_size,max_size", [([5, 9], 20), ([5, 9], None)])
Philip Meier's avatar
Philip Meier committed
239
240
    def test__get_params(self, min_size, max_size):
        canvas_size = (3, 10)
241

242
        transform = transforms.RandomShortestSize(min_size=min_size, max_size=max_size, antialias=True)
243

Philip Meier's avatar
Philip Meier committed
244
        sample = make_image(canvas_size)
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        params = transform._get_params([sample])

        assert "size" in params
        size = params["size"]

        assert isinstance(size, tuple) and len(size) == 2

        longer = max(size)
        shorter = min(size)
        if max_size is not None:
            assert longer <= max_size
            assert shorter <= max_size
        else:
            assert shorter in min_size


class TestRandomResize:
    def test__get_params(self):
        min_size = 3
        max_size = 6

266
        transform = transforms.RandomResize(min_size=min_size, max_size=max_size, antialias=True)
267
268
269
270
271
272
273
274
275
276

        for _ in range(10):
            params = transform._get_params([])

            assert isinstance(params["size"], list) and len(params["size"]) == 1
            size = params["size"][0]

            assert min_size <= size < max_size


277
@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, tv_tensors.Image))
278
279
@pytest.mark.parametrize("label_type", (torch.Tensor, int))
@pytest.mark.parametrize("dataset_return_type", (dict, tuple))
280
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImage))
281
282
def test_classif_preset(image_type, label_type, dataset_return_type, to_tensor):

283
    image = tv_tensors.Image(torch.randint(0, 256, size=(1, 3, 250, 250), dtype=torch.uint8))
284
285
286
287
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
288
        assert is_pure_tensor(image)
289
290
291
292
293
294
295
296
297
298
299

    label = 1 if label_type is int else torch.tensor([1])

    if dataset_return_type is dict:
        sample = {
            "image": image,
            "label": label,
        }
    else:
        sample = image, label

300
301
302
303
304
305
    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

306
307
    t = transforms.Compose(
        [
308
            transforms.RandomResizedCrop((224, 224), antialias=True),
309
310
311
312
313
            transforms.RandomHorizontalFlip(p=1),
            transforms.RandAugment(),
            transforms.TrivialAugmentWide(),
            transforms.AugMix(),
            transforms.AutoAugment(),
314
            to_tensor,
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
            # TODO: ConvertImageDtype is a pass-through on PIL images, is that
            # intended?  This results in a failure if we convert to tensor after
            # it, because the image would still be uint8 which make Normalize
            # fail.
            transforms.ConvertImageDtype(torch.float),
            transforms.Normalize(mean=[0, 0, 0], std=[1, 1, 1]),
            transforms.RandomErasing(p=1),
        ]
    )

    out = t(sample)

    assert type(out) == type(sample)

    if dataset_return_type is tuple:
        out_image, out_label = out
    else:
        assert out.keys() == sample.keys()
        out_image, out_label = out.values()

    assert out_image.shape[-2:] == (224, 224)
    assert out_label == label


339
@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, tv_tensors.Image))
340
@pytest.mark.parametrize("data_augmentation", ("hflip", "lsj", "multiscale", "ssd", "ssdlite"))
341
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImage))
342
343
344
@pytest.mark.parametrize("sanitize", (True, False))
def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
    torch.manual_seed(0)
345
346
347
348
349
350
351

    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

352
353
354
    if data_augmentation == "hflip":
        t = [
            transforms.RandomHorizontalFlip(p=1),
355
            to_tensor,
356
357
358
359
360
361
362
363
364
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "lsj":
        t = [
            transforms.ScaleJitter(target_size=(1024, 1024), antialias=True),
            # Note: replaced FixedSizeCrop with RandomCrop, becuase we're
            # leaving FixedSizeCrop in prototype for now, and it expects Label
            # classes which we won't release yet.
            # transforms.FixedSizeCrop(
365
            #     size=(1024, 1024), fill=defaultdict(lambda: (123.0, 117.0, 104.0), {tv_tensors.Mask: 0})
366
367
368
            # ),
            transforms.RandomCrop((1024, 1024), pad_if_needed=True),
            transforms.RandomHorizontalFlip(p=1),
369
            to_tensor,
370
371
372
373
374
375
376
377
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "multiscale":
        t = [
            transforms.RandomShortestSize(
                min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333, antialias=True
            ),
            transforms.RandomHorizontalFlip(p=1),
378
            to_tensor,
379
380
381
382
383
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssd":
        t = [
            transforms.RandomPhotometricDistort(p=1),
384
            transforms.RandomZoomOut(fill={"others": (123.0, 117.0, 104.0), tv_tensors.Mask: 0}, p=1),
385
386
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
387
            to_tensor,
388
389
390
391
392
393
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssdlite":
        t = [
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
394
            to_tensor,
395
396
397
            transforms.ConvertImageDtype(torch.float),
        ]
    if sanitize:
398
        t += [transforms.SanitizeBoundingBoxes()]
399
400
401
402
403
    t = transforms.Compose(t)

    num_boxes = 5
    H = W = 250

404
    image = tv_tensors.Image(torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8))
405
406
407
408
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
409
        assert is_pure_tensor(image)
410
411
412
413
414
415

    label = torch.randint(0, 10, size=(num_boxes,))

    boxes = torch.randint(0, min(H, W) // 2, size=(num_boxes, 4))
    boxes[:, 2:] += boxes[:, :2]
    boxes = boxes.clamp(min=0, max=min(H, W))
416
    boxes = tv_tensors.BoundingBoxes(boxes, format="XYXY", canvas_size=(H, W))
417

418
    masks = tv_tensors.Mask(torch.randint(0, 2, size=(num_boxes, H, W), dtype=torch.uint8))
419
420
421
422
423
424
425
426
427
428

    sample = {
        "image": image,
        "label": label,
        "boxes": boxes,
        "masks": masks,
    }

    out = t(sample)

429
    if isinstance(to_tensor, transforms.ToTensor) and image_type is not tv_tensors.Image:
430
        assert is_pure_tensor(out["image"])
431
    else:
432
        assert isinstance(out["image"], tv_tensors.Image)
433
434
435
436
437
438
    assert isinstance(out["label"], type(sample["label"]))

    num_boxes_expected = {
        # ssd and ssdlite contain RandomIoUCrop which may "remove" some bbox. It
        # doesn't remove them strictly speaking, it just marks some boxes as
        # degenerate and those boxes will be later removed by
439
        # SanitizeBoundingBoxes(), which we add to the pipelines if the sanitize
440
441
442
        # param is True.
        # Note that the values below are probably specific to the random seed
        # set above (which is fine).
443
        (True, "ssd"): 5,
444
445
446
447
448
449
450
        (True, "ssdlite"): 4,
    }.get((sanitize, data_augmentation), num_boxes)

    assert out["boxes"].shape[0] == out["masks"].shape[0] == out["label"].shape[0] == num_boxes_expected


@pytest.mark.parametrize("min_size", (1, 10))
451
@pytest.mark.parametrize("labels_getter", ("default", lambda inputs: inputs["labels"], None, lambda inputs: None))
452
453
454
455
456
457
458
459
@pytest.mark.parametrize("sample_type", (tuple, dict))
def test_sanitize_bounding_boxes(min_size, labels_getter, sample_type):

    if sample_type is tuple and not isinstance(labels_getter, str):
        # The "lambda inputs: inputs["labels"]" labels_getter used in this test
        # doesn't work if the input is a tuple.
        return

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    H, W = 256, 128

    boxes_and_validity = [
        ([0, 1, 10, 1], False),  # Y1 == Y2
        ([0, 1, 0, 20], False),  # X1 == X2
        ([0, 0, min_size - 1, 10], False),  # H < min_size
        ([0, 0, 10, min_size - 1], False),  # W < min_size
        ([0, 0, 10, H + 1], False),  # Y2 > H
        ([0, 0, W + 1, 10], False),  # X2 > W
        ([-1, 1, 10, 20], False),  # any < 0
        ([0, 0, -1, 20], False),  # any < 0
        ([0, 0, -10, -1], False),  # any < 0
        ([0, 0, min_size, 10], True),  # H < min_size
        ([0, 0, 10, min_size], True),  # W < min_size
        ([0, 0, W, H], True),  # TODO: Is that actually OK?? Should it be -1?
        ([1, 1, 30, 20], True),
        ([0, 0, 10, 10], True),
        ([1, 1, 30, 20], True),
    ]

    random.shuffle(boxes_and_validity)  # For test robustness: mix order of wrong and correct cases
    boxes, is_valid_mask = zip(*boxes_and_validity)
    valid_indices = [i for (i, is_valid) in enumerate(is_valid_mask) if is_valid]

    boxes = torch.tensor(boxes)
    labels = torch.arange(boxes.shape[0])

487
    boxes = tv_tensors.BoundingBoxes(
488
        boxes,
489
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
490
        canvas_size=(H, W),
491
492
    )

493
    masks = tv_tensors.Mask(torch.randint(0, 2, size=(boxes.shape[0], H, W)))
494
495
    whatever = torch.rand(10)
    input_img = torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8)
496
    sample = {
497
        "image": input_img,
498
499
        "labels": labels,
        "boxes": boxes,
500
        "whatever": whatever,
501
502
503
504
        "None": None,
        "masks": masks,
    }

505
506
507
508
    if sample_type is tuple:
        img = sample.pop("image")
        sample = (img, sample)

509
    out = transforms.SanitizeBoundingBoxes(min_size=min_size, labels_getter=labels_getter)(sample)
510

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    if sample_type is tuple:
        out_image = out[0]
        out_labels = out[1]["labels"]
        out_boxes = out[1]["boxes"]
        out_masks = out[1]["masks"]
        out_whatever = out[1]["whatever"]
    else:
        out_image = out["image"]
        out_labels = out["labels"]
        out_boxes = out["boxes"]
        out_masks = out["masks"]
        out_whatever = out["whatever"]

    assert out_image is input_img
    assert out_whatever is whatever
526

527
528
    assert isinstance(out_boxes, tv_tensors.BoundingBoxes)
    assert isinstance(out_masks, tv_tensors.Mask)
529

530
    if labels_getter is None or (callable(labels_getter) and labels_getter({"labels": "blah"}) is None):
531
        assert out_labels is labels
532
    else:
533
534
        assert isinstance(out_labels, torch.Tensor)
        assert out_boxes.shape[0] == out_labels.shape[0] == out_masks.shape[0]
535
        # This works because we conveniently set labels to arange(num_boxes)
536
        assert out_labels.tolist() == valid_indices
537
538


539
540
541
542
543
544
545
546
547
548
def test_sanitize_bounding_boxes_no_label():
    # Non-regression test for https://github.com/pytorch/vision/issues/7878

    img = make_image()
    boxes = make_bounding_boxes()

    with pytest.raises(ValueError, match="or a two-tuple whose second item is a dict"):
        transforms.SanitizeBoundingBoxes()(img, boxes)

    out_img, out_boxes = transforms.SanitizeBoundingBoxes(labels_getter=None)(img, boxes)
549
550
    assert isinstance(out_img, tv_tensors.Image)
    assert isinstance(out_boxes, tv_tensors.BoundingBoxes)
551
552


553
554
def test_sanitize_bounding_boxes_errors():

555
    good_bbox = tv_tensors.BoundingBoxes(
556
        [[0, 0, 10, 10]],
557
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
558
        canvas_size=(20, 20),
559
560
561
    )

    with pytest.raises(ValueError, match="min_size must be >= 1"):
562
        transforms.SanitizeBoundingBoxes(min_size=0)
563
    with pytest.raises(ValueError, match="labels_getter should either be 'default'"):
564
        transforms.SanitizeBoundingBoxes(labels_getter=12)
565
566
567

    with pytest.raises(ValueError, match="Could not infer where the labels are"):
        bad_labels_key = {"bbox": good_bbox, "BAD_KEY": torch.arange(good_bbox.shape[0])}
568
        transforms.SanitizeBoundingBoxes()(bad_labels_key)
569
570
571

    with pytest.raises(ValueError, match="must be a tensor"):
        not_a_tensor = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0]).tolist()}
572
        transforms.SanitizeBoundingBoxes()(not_a_tensor)
573
574
575

    with pytest.raises(ValueError, match="Number of boxes"):
        different_sizes = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0] + 3)}
576
        transforms.SanitizeBoundingBoxes()(different_sizes)
577

578

Philip Meier's avatar
Philip Meier committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
class TestLambda:
    inputs = pytest.mark.parametrize("input", [object(), torch.empty(()), np.empty(()), "string", 1, 0.0])

    @inputs
    def test_default(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        transform = transforms.Lambda(was_applied_fn)

        transform(input)

        assert was_applied

    @inputs
    def test_with_types(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        types = (torch.Tensor, np.ndarray)
        transform = transforms.Lambda(was_applied_fn, *types)

        transform(input)

        assert was_applied is isinstance(input, types)