test_backbone_utils.py 11.6 KB
Newer Older
1
import random
2
from itertools import chain
3
from typing import Mapping, Sequence
4

5
import pytest
6
import torch
7
8
9
from common_utils import set_rng_seed
from torchvision import models
from torchvision.models._utils import IntermediateLayerGetter
10
from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
11
12
13
14
15
16
from torchvision.models.feature_extraction import create_feature_extractor
from torchvision.models.feature_extraction import get_graph_node_names


def get_available_models():
    # TODO add a registration mechanism to torchvision.models
17
    return [k for k, v in models.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]
18

19

20
@pytest.mark.parametrize("backbone_name", ("resnet18", "resnet50"))
21
def test_resnet_fpn_backbone(backbone_name):
22
    x = torch.rand(1, 3, 300, 300, dtype=torch.float32, device="cpu")
23
    y = resnet_fpn_backbone(backbone_name=backbone_name, pretrained=False)(x)
24
    assert list(y.keys()) == ["0", "1", "2", "3", "pool"]
25
26
27
28
29
30
31


# Needed by TestFxFeatureExtraction.test_leaf_module_and_function
def leaf_function(x):
    return int(x)


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Needed by TestFXFeatureExtraction. Checking that node naming conventions
# are respected. Particularly the index postfix of repeated node names
class TestSubModule(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.relu = torch.nn.ReLU()

    def forward(self, x):
        x = x + 1
        x = x + 1
        x = self.relu(x)
        x = self.relu(x)
        return x


class TestModule(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.submodule = TestSubModule()
        self.relu = torch.nn.ReLU()

    def forward(self, x):
        x = self.submodule(x)
        x = x + 1
        x = x + 1
        x = self.relu(x)
        x = self.relu(x)
        return x


test_module_nodes = [
63
64
65
66
67
68
69
70
71
72
    "x",
    "submodule.add",
    "submodule.add_1",
    "submodule.relu",
    "submodule.relu_1",
    "add",
    "add_1",
    "relu",
    "relu_1",
]
73
74


75
class TestFxFeatureExtraction:
76
77
    inp = torch.rand(1, 3, 224, 224, dtype=torch.float32, device="cpu")
    model_defaults = {"num_classes": 1, "pretrained": False}
78
    leaf_modules = []
79
80
81
82
83
84

    def _create_feature_extractor(self, *args, **kwargs):
        """
        Apply leaf modules
        """
        tracer_kwargs = {}
85
86
        if "tracer_kwargs" not in kwargs:
            tracer_kwargs = {"leaf_modules": self.leaf_modules}
87
        else:
88
89
            tracer_kwargs = kwargs.pop("tracer_kwargs")
        return create_feature_extractor(*args, **kwargs, tracer_kwargs=tracer_kwargs, suppress_diff_warning=True)
90
91
92

    def _get_return_nodes(self, model):
        set_rng_seed(0)
93
94
95
96
97
98
99
100
101
102
        exclude_nodes_filter = [
            "getitem",
            "floordiv",
            "size",
            "chunk",
            "_assert",
            "eq",
            "dim",
            "getattr",
        ]
103
        train_nodes, eval_nodes = get_graph_node_names(
104
105
            model, tracer_kwargs={"leaf_modules": self.leaf_modules}, suppress_diff_warning=True
        )
106
107
        # Get rid of any nodes that don't return tensors as they cause issues
        # when testing backward pass.
108
109
        train_nodes = [n for n in train_nodes if not any(x in n for x in exclude_nodes_filter)]
        eval_nodes = [n for n in eval_nodes if not any(x in n for x in exclude_nodes_filter)]
110
111
        return random.sample(train_nodes, 10), random.sample(eval_nodes, 10)

112
    @pytest.mark.parametrize("model_name", get_available_models())
113
114
115
116
117
118
    def test_build_fx_feature_extractor(self, model_name):
        set_rng_seed(0)
        model = models.__dict__[model_name](**self.model_defaults).eval()
        train_return_nodes, eval_return_nodes = self._get_return_nodes(model)
        # Check that it works with both a list and dict for return nodes
        self._create_feature_extractor(
119
120
            model, train_return_nodes={v: v for v in train_return_nodes}, eval_return_nodes=eval_return_nodes
        )
121
        self._create_feature_extractor(
122
123
            model, train_return_nodes=train_return_nodes, eval_return_nodes=eval_return_nodes
        )
124
125
126
127
128
129
130
        # Check must specify return nodes
        with pytest.raises(AssertionError):
            self._create_feature_extractor(model)
        # Check return_nodes and train_return_nodes / eval_return nodes
        # mutual exclusivity
        with pytest.raises(AssertionError):
            self._create_feature_extractor(
131
132
                model, return_nodes=train_return_nodes, train_return_nodes=train_return_nodes
            )
133
134
        # Check train_return_nodes / eval_return nodes must both be specified
        with pytest.raises(AssertionError):
135
            self._create_feature_extractor(model, train_return_nodes=train_return_nodes)
136
137
138
        # Check invalid node name raises ValueError
        with pytest.raises(ValueError):
            # First just double check that this node really doesn't exist
139
140
            if not any(n.startswith("l") or n.startswith("l.") for n in chain(train_return_nodes, eval_return_nodes)):
                self._create_feature_extractor(model, train_return_nodes=["l"], eval_return_nodes=["l"])
141
142
143
            else:  # otherwise skip this check
                raise ValueError

144
145
146
147
148
    def test_node_name_conventions(self):
        model = TestModule()
        train_nodes, _ = get_graph_node_names(model)
        assert all(a == b for a, b in zip(train_nodes, test_module_nodes))

149
    @pytest.mark.parametrize("model_name", get_available_models())
150
151
152
153
    def test_forward_backward(self, model_name):
        model = models.__dict__[model_name](**self.model_defaults).train()
        train_return_nodes, eval_return_nodes = self._get_return_nodes(model)
        model = self._create_feature_extractor(
154
155
            model, train_return_nodes=train_return_nodes, eval_return_nodes=eval_return_nodes
        )
156
        out = model(self.inp)
157
158
159
160
161
162
163
164
165
166
        out_agg = 0
        for node_out in out.values():
            if isinstance(node_out, Sequence):
                out_agg += sum(o.mean() for o in node_out if o is not None)
            elif isinstance(node_out, Mapping):
                out_agg += sum(o.mean() for o in node_out.values() if o is not None)
            else:
                # Assume that the only other alternative at this point is a Tensor
                out_agg += node_out.mean()
        out_agg.backward()
167
168
169

    def test_feature_extraction_methods_equivalence(self):
        model = models.resnet18(**self.model_defaults).eval()
170
171
172
        return_layers = {"layer1": "layer1", "layer2": "layer2", "layer3": "layer3", "layer4": "layer4"}

        ilg_model = IntermediateLayerGetter(model, return_layers).eval()
173
174
175
        fx_model = self._create_feature_extractor(model, return_layers)

        # Check that we have same parameters
176
        for (n1, p1), (n2, p2) in zip(ilg_model.named_parameters(), fx_model.named_parameters()):
177
178
179
180
181
182
183
184
185
186
187
            assert n1 == n2
            assert p1.equal(p2)

        # And that ouputs match
        with torch.no_grad():
            ilg_out = ilg_model(self.inp)
            fgn_out = fx_model(self.inp)
        assert all(k1 == k2 for k1, k2 in zip(ilg_out.keys(), fgn_out.keys()))
        for k in ilg_out.keys():
            assert ilg_out[k].equal(fgn_out[k])

188
    @pytest.mark.parametrize("model_name", get_available_models())
189
190
191
192
193
    def test_jit_forward_backward(self, model_name):
        set_rng_seed(0)
        model = models.__dict__[model_name](**self.model_defaults).train()
        train_return_nodes, eval_return_nodes = self._get_return_nodes(model)
        model = self._create_feature_extractor(
194
195
            model, train_return_nodes=train_return_nodes, eval_return_nodes=eval_return_nodes
        )
196
197
        model = torch.jit.script(model)
        fgn_out = model(self.inp)
198
199
200
201
202
203
204
205
206
207
        out_agg = 0
        for node_out in fgn_out.values():
            if isinstance(node_out, Sequence):
                out_agg += sum(o.mean() for o in node_out if o is not None)
            elif isinstance(node_out, Mapping):
                out_agg += sum(o.mean() for o in node_out.values() if o is not None)
            else:
                # Assume that the only other alternative at this point is a Tensor
                out_agg += node_out.mean()
        out_agg.backward()
208
209
210
211
212

    def test_train_eval(self):
        class TestModel(torch.nn.Module):
            def __init__(self):
                super().__init__()
213
                self.dropout = torch.nn.Dropout(p=1.0)
214
215
216
217
218
219
220
221
222
223
224
225
226

            def forward(self, x):
                x = x.mean()
                x = self.dropout(x)  # dropout
                if self.training:
                    x += 100  # add
                else:
                    x *= 0  # mul
                x -= 0  # sub
                return x

        model = TestModel()

227
228
        train_return_nodes = ["dropout", "add", "sub"]
        eval_return_nodes = ["dropout", "mul", "sub"]
229
230
231
232

        def checks(model, mode):
            with torch.no_grad():
                out = model(torch.ones(10, 10))
233
            if mode == "train":
234
                # Check that dropout is respected
235
                assert out["dropout"].item() == 0
236
                # Check that control flow dependent on training_mode is respected
237
238
239
240
                assert out["sub"].item() == 100
                assert "add" in out
                assert "mul" not in out
            elif mode == "eval":
241
                # Check that dropout is respected
242
                assert out["dropout"].item() == 1
243
                # Check that control flow dependent on training_mode is respected
244
245
246
                assert out["sub"].item() == 0
                assert "mul" in out
                assert "add" not in out
247
248
249
250

        # Starting from train mode
        model.train()
        fx_model = self._create_feature_extractor(
251
252
            model, train_return_nodes=train_return_nodes, eval_return_nodes=eval_return_nodes
        )
253
254
255
256
        # Check that the models stay in their original training state
        assert model.training
        assert fx_model.training
        # Check outputs
257
        checks(fx_model, "train")
258
259
        # Check outputs after switching to eval mode
        fx_model.eval()
260
        checks(fx_model, "eval")
261
262
263
264

        # Starting from eval mode
        model.eval()
        fx_model = self._create_feature_extractor(
265
266
            model, train_return_nodes=train_return_nodes, eval_return_nodes=eval_return_nodes
        )
267
268
269
270
        # Check that the models stay in their original training state
        assert not model.training
        assert not fx_model.training
        # Check outputs
271
        checks(fx_model, "eval")
272
273
        # Check outputs after switching to train mode
        fx_model.train()
274
        checks(fx_model, "train")
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

    def test_leaf_module_and_function(self):
        class LeafModule(torch.nn.Module):
            def forward(self, x):
                # This would raise a TypeError if it were not in a leaf module
                int(x.shape[0])
                return torch.nn.functional.relu(x + 4)

        class TestModule(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = torch.nn.Conv2d(3, 1, 3)
                self.leaf_module = LeafModule()

            def forward(self, x):
                leaf_function(x.shape[0])
                x = self.conv(x)
                return self.leaf_module(x)

        model = self._create_feature_extractor(
295
296
297
298
            TestModule(),
            return_nodes=["leaf_module"],
            tracer_kwargs={"leaf_modules": [LeafModule], "autowrap_functions": [leaf_function]},
        ).train()
299
300

        # Check that LeafModule is not in the list of nodes
301
302
        assert "relu" not in [str(n) for n in model.graph.nodes]
        assert "leaf_module" in [str(n) for n in model.graph.nodes]
303
304
305
306

        # Check forward
        out = model(self.inp)
        # And backward
307
        out["leaf_module"].mean().backward()