test_backbone_utils.py 9.9 KB
Newer Older
1
2
3
4
from functools import partial
from itertools import chain
import random

5
import torch
6
7
from torchvision import models
import torchvision
8
from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
9
10
11
from torchvision.models.feature_extraction import create_feature_extractor
from torchvision.models.feature_extraction import get_graph_node_names
from torchvision.models._utils import IntermediateLayerGetter
12

13
import pytest
14

15
16
17
18
19
20
21
22
from common_utils import set_rng_seed


def get_available_models():
    # TODO add a registration mechanism to torchvision.models
    return [k for k, v in models.__dict__.items()
            if callable(v) and k[0].lower() == k[0] and k[0] != "_"]

23

24
25
26
27
28
@pytest.mark.parametrize('backbone_name', ('resnet18', 'resnet50'))
def test_resnet_fpn_backbone(backbone_name):
    x = torch.rand(1, 3, 300, 300, dtype=torch.float32, device='cpu')
    y = resnet_fpn_backbone(backbone_name=backbone_name, pretrained=False)(x)
    assert list(y.keys()) == ['0', '1', '2', '3', 'pool']
29
30
31
32
33
34
35
36
37
38
39
40
41


# Needed by TestFxFeatureExtraction.test_leaf_module_and_function
def leaf_function(x):
    return int(x)


class TestFxFeatureExtraction:
    inp = torch.rand(1, 3, 224, 224, dtype=torch.float32, device='cpu')
    model_defaults = {
        'num_classes': 1,
        'pretrained': False
    }
42
    leaf_modules = []
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

    def _create_feature_extractor(self, *args, **kwargs):
        """
        Apply leaf modules
        """
        tracer_kwargs = {}
        if 'tracer_kwargs' not in kwargs:
            tracer_kwargs = {'leaf_modules': self.leaf_modules}
        else:
            tracer_kwargs = kwargs.pop('tracer_kwargs')
        return create_feature_extractor(
            *args, **kwargs,
            tracer_kwargs=tracer_kwargs,
            suppress_diff_warning=True)

    def _get_return_nodes(self, model):
        set_rng_seed(0)
        exclude_nodes_filter = ['getitem', 'floordiv', 'size', 'chunk']
        train_nodes, eval_nodes = get_graph_node_names(
            model, tracer_kwargs={'leaf_modules': self.leaf_modules},
            suppress_diff_warning=True)
        # Get rid of any nodes that don't return tensors as they cause issues
        # when testing backward pass.
        train_nodes = [n for n in train_nodes
                       if not any(x in n for x in exclude_nodes_filter)]
        eval_nodes = [n for n in eval_nodes
                      if not any(x in n for x in exclude_nodes_filter)]
        return random.sample(train_nodes, 10), random.sample(eval_nodes, 10)

    @pytest.mark.parametrize('model_name', get_available_models())
    def test_build_fx_feature_extractor(self, model_name):
        set_rng_seed(0)
        model = models.__dict__[model_name](**self.model_defaults).eval()
        train_return_nodes, eval_return_nodes = self._get_return_nodes(model)
        # Check that it works with both a list and dict for return nodes
        self._create_feature_extractor(
            model, train_return_nodes={v: v for v in train_return_nodes},
            eval_return_nodes=eval_return_nodes)
        self._create_feature_extractor(
            model, train_return_nodes=train_return_nodes,
            eval_return_nodes=eval_return_nodes)
        # Check must specify return nodes
        with pytest.raises(AssertionError):
            self._create_feature_extractor(model)
        # Check return_nodes and train_return_nodes / eval_return nodes
        # mutual exclusivity
        with pytest.raises(AssertionError):
            self._create_feature_extractor(
                model, return_nodes=train_return_nodes,
                train_return_nodes=train_return_nodes)
        # Check train_return_nodes / eval_return nodes must both be specified
        with pytest.raises(AssertionError):
            self._create_feature_extractor(
                model, train_return_nodes=train_return_nodes)
        # Check invalid node name raises ValueError
        with pytest.raises(ValueError):
            # First just double check that this node really doesn't exist
            if not any(n.startswith('l') or n.startswith('l.') for n
                       in chain(train_return_nodes, eval_return_nodes)):
                self._create_feature_extractor(
                    model, train_return_nodes=['l'], eval_return_nodes=['l'])
            else:  # otherwise skip this check
                raise ValueError

    @pytest.mark.parametrize('model_name', get_available_models())
    def test_forward_backward(self, model_name):
        model = models.__dict__[model_name](**self.model_defaults).train()
        train_return_nodes, eval_return_nodes = self._get_return_nodes(model)
        model = self._create_feature_extractor(
            model, train_return_nodes=train_return_nodes,
            eval_return_nodes=eval_return_nodes)
        out = model(self.inp)
        sum([o.mean() for o in out.values()]).backward()

    def test_feature_extraction_methods_equivalence(self):
        model = models.resnet18(**self.model_defaults).eval()
        return_layers = {
            'layer1': 'layer1',
            'layer2': 'layer2',
            'layer3': 'layer3',
            'layer4': 'layer4'
        }

        ilg_model = IntermediateLayerGetter(
            model, return_layers).eval()
        fx_model = self._create_feature_extractor(model, return_layers)

        # Check that we have same parameters
        for (n1, p1), (n2, p2) in zip(ilg_model.named_parameters(),
                                      fx_model.named_parameters()):
            assert n1 == n2
            assert p1.equal(p2)

        # And that ouputs match
        with torch.no_grad():
            ilg_out = ilg_model(self.inp)
            fgn_out = fx_model(self.inp)
        assert all(k1 == k2 for k1, k2 in zip(ilg_out.keys(), fgn_out.keys()))
        for k in ilg_out.keys():
            assert ilg_out[k].equal(fgn_out[k])

    @pytest.mark.parametrize('model_name', get_available_models())
    def test_jit_forward_backward(self, model_name):
        set_rng_seed(0)
        model = models.__dict__[model_name](**self.model_defaults).train()
        train_return_nodes, eval_return_nodes = self._get_return_nodes(model)
        model = self._create_feature_extractor(
            model, train_return_nodes=train_return_nodes,
            eval_return_nodes=eval_return_nodes)
        model = torch.jit.script(model)
        fgn_out = model(self.inp)
        sum([o.mean() for o in fgn_out.values()]).backward()

    def test_train_eval(self):
        class TestModel(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.dropout = torch.nn.Dropout(p=1.)

            def forward(self, x):
                x = x.mean()
                x = self.dropout(x)  # dropout
                if self.training:
                    x += 100  # add
                else:
                    x *= 0  # mul
                x -= 0  # sub
                return x

        model = TestModel()

        train_return_nodes = ['dropout', 'add', 'sub']
        eval_return_nodes = ['dropout', 'mul', 'sub']

        def checks(model, mode):
            with torch.no_grad():
                out = model(torch.ones(10, 10))
            if mode == 'train':
                # Check that dropout is respected
                assert out['dropout'].item() == 0
                # Check that control flow dependent on training_mode is respected
                assert out['sub'].item() == 100
                assert 'add' in out
                assert 'mul' not in out
            elif mode == 'eval':
                # Check that dropout is respected
                assert out['dropout'].item() == 1
                # Check that control flow dependent on training_mode is respected
                assert out['sub'].item() == 0
                assert 'mul' in out
                assert 'add' not in out

        # Starting from train mode
        model.train()
        fx_model = self._create_feature_extractor(
            model, train_return_nodes=train_return_nodes,
            eval_return_nodes=eval_return_nodes)
        # Check that the models stay in their original training state
        assert model.training
        assert fx_model.training
        # Check outputs
        checks(fx_model, 'train')
        # Check outputs after switching to eval mode
        fx_model.eval()
        checks(fx_model, 'eval')

        # Starting from eval mode
        model.eval()
        fx_model = self._create_feature_extractor(
            model, train_return_nodes=train_return_nodes,
            eval_return_nodes=eval_return_nodes)
        # Check that the models stay in their original training state
        assert not model.training
        assert not fx_model.training
        # Check outputs
        checks(fx_model, 'eval')
        # Check outputs after switching to train mode
        fx_model.train()
        checks(fx_model, 'train')

    def test_leaf_module_and_function(self):
        class LeafModule(torch.nn.Module):
            def forward(self, x):
                # This would raise a TypeError if it were not in a leaf module
                int(x.shape[0])
                return torch.nn.functional.relu(x + 4)

        class TestModule(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = torch.nn.Conv2d(3, 1, 3)
                self.leaf_module = LeafModule()

            def forward(self, x):
                leaf_function(x.shape[0])
                x = self.conv(x)
                return self.leaf_module(x)

        model = self._create_feature_extractor(
            TestModule(), return_nodes=['leaf_module'],
            tracer_kwargs={'leaf_modules': [LeafModule],
                           'autowrap_functions': [leaf_function]}).train()

        # Check that LeafModule is not in the list of nodes
        assert 'relu' not in [str(n) for n in model.graph.nodes]
        assert 'leaf_module' in [str(n) for n in model.graph.nodes]

        # Check forward
        out = model(self.inp)
        # And backward
        out['leaf_module'].mean().backward()