video_utils.py 13.1 KB
Newer Older
1
2
import bisect
import math
3
from fractions import Fraction
4
from typing import List
5

6
import torch
7
from torchvision.io import (
8
    _probe_video_from_file,
9
    _read_video_from_file,
10
11
12
    _read_video_timestamps_from_file,
    read_video,
    read_video_timestamps,
13
)
14

15
16
from .utils import tqdm

17

18
19
20
21
22
23
24
25
26
27
28
29
def pts_convert(pts, timebase_from, timebase_to, round_func=math.floor):
    """convert pts between different time bases
    Args:
        pts: presentation timestamp, float
        timebase_from: original timebase. Fraction
        timebase_to: new timebase. Fraction
        round_func: rounding function.
    """
    new_pts = Fraction(pts, 1) * timebase_from / timebase_to
    return round_func(new_pts)


30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
def unfold(tensor, size, step, dilation=1):
    """
    similar to tensor.unfold, but with the dilation
    and specialized for 1d tensors

    Returns all consecutive windows of `size` elements, with
    `step` between windows. The distance between each element
    in a window is given by `dilation`.
    """
    assert tensor.dim() == 1
    o_stride = tensor.stride(0)
    numel = tensor.numel()
    new_stride = (step * o_stride, dilation * o_stride)
    new_size = ((numel - (dilation * (size - 1) + 1)) // step + 1, size)
    if new_size[0] < 1:
        new_size = (0, size)
    return torch.as_strided(tensor, new_size, new_stride)


49
class _VideoTimestampsDataset(object):
50
    """
51
52
53
54
55
    Dataset used to parallelize the reading of the timestamps
    of a list of videos, given their paths in the filesystem.

    Used in VideoClips and defined at top level so it can be
    pickled when forking.
56
    """
57

58
59
    def __init__(self, video_paths: List[str]):
        self.video_paths = video_paths
60
61

    def __len__(self):
62
        return len(self.video_paths)
63
64

    def __getitem__(self, idx):
65
        return read_video_timestamps(self.video_paths[idx])
66
67


68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
class VideoClips(object):
    """
    Given a list of video files, computes all consecutive subvideos of size
    `clip_length_in_frames`, where the distance between each subvideo in the
    same video is defined by `frames_between_clips`.
    If `frame_rate` is specified, it will also resample all the videos to have
    the same frame rate, and the clips will refer to this frame rate.

    Creating this instance the first time is time-consuming, as it needs to
    decode all the videos in `video_paths`. It is recommended that you
    cache the results after instantiation of the class.

    Recreating the clips for different clip lengths is fast, and can be done
    with the `compute_clips` method.

    Arguments:
        video_paths (List[str]): paths to the video files
        clip_length_in_frames (int): size of a clip in number of frames
        frames_between_clips (int): step (in frames) between each clip
        frame_rate (int, optional): if specified, it will resample the video
            so that it has `frame_rate`, and then the clips will be defined
            on the resampled video
ekosman's avatar
ekosman committed
90
91
        num_workers (int): how many subprocesses to use for data loading.
            0 means that the data will be loaded in the main process. (default: 0)
92
    """
93
94
95
96
97
98
99
100
101
102
103
104

    def __init__(
        self,
        video_paths,
        clip_length_in_frames=16,
        frames_between_clips=1,
        frame_rate=None,
        _precomputed_metadata=None,
        num_workers=0,
        _video_width=0,
        _video_height=0,
        _video_min_dimension=0,
105
        _video_max_dimension=0,
106
107
108
        _audio_samples=0,
        _audio_channels=0,
    ):
109

110
        self.video_paths = video_paths
111
        self.num_workers = num_workers
112
113

        # these options are not valid for pyav backend
114
115
116
        self._video_width = _video_width
        self._video_height = _video_height
        self._video_min_dimension = _video_min_dimension
117
        self._video_max_dimension = _video_max_dimension
118
        self._audio_samples = _audio_samples
119
        self._audio_channels = _audio_channels
ekosman's avatar
ekosman committed
120

121
122
123
124
        if _precomputed_metadata is None:
            self._compute_frame_pts()
        else:
            self._init_from_metadata(_precomputed_metadata)
125
126
        self.compute_clips(clip_length_in_frames, frames_between_clips, frame_rate)

127
128
129
    def _collate_fn(self, x):
        return x

130
131
    def _compute_frame_pts(self):
        self.video_pts = []
132
        self.video_fps = []
133
134
135
136

        # strategy: use a DataLoader to parallelize read_video_timestamps
        # so need to create a dummy dataset first
        import torch.utils.data
137

138
        dl = torch.utils.data.DataLoader(
139
            _VideoTimestampsDataset(self.video_paths),
140
            batch_size=16,
141
            num_workers=self.num_workers,
142
143
            collate_fn=self._collate_fn,
        )
144
145
146
147

        with tqdm(total=len(dl)) as pbar:
            for batch in dl:
                pbar.update(1)
148
149
150
151
                clips, fps = list(zip(*batch))
                clips = [torch.as_tensor(c) for c in clips]
                self.video_pts.extend(clips)
                self.video_fps.extend(fps)
152

153
    def _init_from_metadata(self, metadata):
154
        self.video_paths = metadata["video_paths"]
155
156
        assert len(self.video_paths) == len(metadata["video_pts"])
        self.video_pts = metadata["video_pts"]
157
158
        assert len(self.video_paths) == len(metadata["video_fps"])
        self.video_fps = metadata["video_fps"]
159
160
161
162
163
164

    @property
    def metadata(self):
        _metadata = {
            "video_paths": self.video_paths,
            "video_pts": self.video_pts,
165
            "video_fps": self.video_fps,
166
        }
167
        return _metadata
168
169
170
171

    def subset(self, indices):
        video_paths = [self.video_paths[i] for i in indices]
        video_pts = [self.video_pts[i] for i in indices]
172
        video_fps = [self.video_fps[i] for i in indices]
173
        metadata = {
174
            "video_paths": video_paths,
175
            "video_pts": video_pts,
176
            "video_fps": video_fps,
177
        }
178
179
180
181
182
183
184
185
186
187
        return type(self)(
            video_paths,
            self.num_frames,
            self.step,
            self.frame_rate,
            _precomputed_metadata=metadata,
            num_workers=self.num_workers,
            _video_width=self._video_width,
            _video_height=self._video_height,
            _video_min_dimension=self._video_min_dimension,
188
            _video_max_dimension=self._video_max_dimension,
189
190
191
            _audio_samples=self._audio_samples,
            _audio_channels=self._audio_channels,
        )
192

193
194
    @staticmethod
    def compute_clips_for_video(video_pts, num_frames, step, fps, frame_rate):
195
196
197
198
        if fps is None:
            # if for some reason the video doesn't have fps (because doesn't have a video stream)
            # set the fps to 1. The value doesn't matter, because video_pts is empty anyway
            fps = 1
199
200
201
        if frame_rate is None:
            frame_rate = fps
        total_frames = len(video_pts) * (float(frame_rate) / fps)
202
203
204
        idxs = VideoClips._resample_video_idx(
            int(math.floor(total_frames)), fps, frame_rate
        )
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        video_pts = video_pts[idxs]
        clips = unfold(video_pts, num_frames, step)
        if isinstance(idxs, slice):
            idxs = [idxs] * len(clips)
        else:
            idxs = unfold(idxs, num_frames, step)
        return clips, idxs

    def compute_clips(self, num_frames, step, frame_rate=None):
        """
        Compute all consecutive sequences of clips from video_pts.
        Always returns clips of size `num_frames`, meaning that the
        last few frames in a video can potentially be dropped.

        Arguments:
            num_frames (int): number of frames for the clip
            step (int): distance between two clips
        """
        self.num_frames = num_frames
        self.step = step
        self.frame_rate = frame_rate
        self.clips = []
        self.resampling_idxs = []
228
        for video_pts, fps in zip(self.video_pts, self.video_fps):
229
230
231
            clips, idxs = self.compute_clips_for_video(
                video_pts, num_frames, step, fps, frame_rate
            )
232
233
            self.clips.append(clips)
            self.resampling_idxs.append(idxs)
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        clip_lengths = torch.as_tensor([len(v) for v in self.clips])
        self.cumulative_sizes = clip_lengths.cumsum(0).tolist()

    def __len__(self):
        return self.num_clips()

    def num_videos(self):
        return len(self.video_paths)

    def num_clips(self):
        """
        Number of subclips that are available in the video list.
        """
        return self.cumulative_sizes[-1]

    def get_clip_location(self, idx):
        """
        Converts a flattened representation of the indices into a video_idx, clip_idx
        representation.
        """
        video_idx = bisect.bisect_right(self.cumulative_sizes, idx)
        if video_idx == 0:
            clip_idx = idx
        else:
            clip_idx = idx - self.cumulative_sizes[video_idx - 1]
        return video_idx, clip_idx

    @staticmethod
    def _resample_video_idx(num_frames, original_fps, new_fps):
        step = float(original_fps) / new_fps
        if step.is_integer():
            # optimization: if step is integer, don't need to perform
            # advanced indexing
            step = int(step)
            return slice(None, None, step)
        idxs = torch.arange(num_frames, dtype=torch.float32) * step
        idxs = idxs.floor().to(torch.int64)
        return idxs

    def get_clip(self, idx):
        """
        Gets a subclip from a list of videos.

        Arguments:
            idx (int): index of the subclip. Must be between 0 and num_clips().

        Returns:
            video (Tensor)
            audio (Tensor)
            info (Dict)
            video_idx (int): index of the video in `video_paths`
        """
        if idx >= self.num_clips():
287
288
289
290
            raise IndexError(
                "Index {} out of range "
                "({} number of clips)".format(idx, self.num_clips())
            )
291
292
293
        video_idx, clip_idx = self.get_clip_location(idx)
        video_path = self.video_paths[video_idx]
        clip_pts = self.clips[video_idx][clip_idx]
294

295
        from torchvision import get_video_backend
296

297
298
299
300
301
302
303
304
305
        backend = get_video_backend()

        if backend == "pyav":
            # check for invalid options
            if self._video_width != 0:
                raise ValueError("pyav backend doesn't support _video_width != 0")
            if self._video_height != 0:
                raise ValueError("pyav backend doesn't support _video_height != 0")
            if self._video_min_dimension != 0:
306
307
308
                raise ValueError(
                    "pyav backend doesn't support _video_min_dimension != 0"
                )
309
310
311
312
            if self._video_max_dimension != 0:
                raise ValueError(
                    "pyav backend doesn't support _video_max_dimension != 0"
                )
313
314
315
316
            if self._audio_samples != 0:
                raise ValueError("pyav backend doesn't support _audio_samples != 0")

        if backend == "pyav":
317
318
319
320
            start_pts = clip_pts[0].item()
            end_pts = clip_pts[-1].item()
            video, audio, info = read_video(video_path, start_pts, end_pts)
        else:
321
            info = _probe_video_from_file(video_path)
322
            video_fps = info.video_fps
323
            audio_fps = None
324
325
326
327
328
329

            video_start_pts = clip_pts[0].item()
            video_end_pts = clip_pts[-1].item()

            audio_start_pts, audio_end_pts = 0, -1
            audio_timebase = Fraction(0, 1)
330
331
332
333
334
335
336
            video_timebase = Fraction(
                info.video_timebase.numerator, info.video_timebase.denominator
            )
            if info.has_audio:
                audio_timebase = Fraction(
                    info.audio_timebase.numerator, info.audio_timebase.denominator
                )
337
                audio_start_pts = pts_convert(
338
                    video_start_pts, video_timebase, audio_timebase, math.floor
339
340
                )
                audio_end_pts = pts_convert(
341
                    video_end_pts, video_timebase, audio_timebase, math.ceil
342
                )
343
                audio_fps = info.audio_sample_rate
344
345
            video, audio, info = _read_video_from_file(
                video_path,
346
347
348
                video_width=self._video_width,
                video_height=self._video_height,
                video_min_dimension=self._video_min_dimension,
349
                video_max_dimension=self._video_max_dimension,
350
                video_pts_range=(video_start_pts, video_end_pts),
351
                video_timebase=video_timebase,
352
                audio_samples=self._audio_samples,
353
                audio_channels=self._audio_channels,
354
355
356
                audio_pts_range=(audio_start_pts, audio_end_pts),
                audio_timebase=audio_timebase,
            )
357
358
359
360
361

            info = {"video_fps": video_fps}
            if audio_fps is not None:
                info["audio_fps"] = audio_fps

362
363
364
365
366
367
        if self.frame_rate is not None:
            resampling_idx = self.resampling_idxs[video_idx][clip_idx]
            if isinstance(resampling_idx, torch.Tensor):
                resampling_idx = resampling_idx - resampling_idx[0]
            video = video[resampling_idx]
            info["video_fps"] = self.frame_rate
368
369
370
        assert len(video) == self.num_frames, "{} x {}".format(
            video.shape, self.num_frames
        )
371
        return video, audio, info, video_idx