mnist.py 20.8 KB
Newer Older
1
from .vision import VisionDataset
2
import warnings
Tian Qi Chen's avatar
Tian Qi Chen committed
3
4
5
from PIL import Image
import os
import os.path
6
import numpy as np
Tian Qi Chen's avatar
Tian Qi Chen committed
7
8
import torch
import codecs
9
import string
10
from typing import Any, Callable, Dict, IO, List, Optional, Tuple, Union
11
from .utils import download_url, download_and_extract_archive, extract_archive, \
12
    verify_str_arg
Tian Qi Chen's avatar
Tian Qi Chen committed
13

14

15
class MNIST(VisionDataset):
16
17
18
    """`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset.

    Args:
19
20
        root (string): Root directory of dataset where ``MNIST/processed/training.pt``
            and  ``MNIST/processed/test.pt`` exist.
21
22
23
24
25
26
27
28
29
30
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
31
32
33
34
35
36

    resources = [
        ("http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz", "f68b3c2dcbeaaa9fbdd348bbdeb94873"),
        ("http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz", "d53e105ee54ea40749a09fcbcd1e9432"),
        ("http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz", "9fb629c4189551a2d022fa330f9573f3"),
        ("http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz", "ec29112dd5afa0611ce80d1b7f02629c")
Tian Qi Chen's avatar
Tian Qi Chen committed
37
    ]
38

39
40
    training_file = 'training.pt'
    test_file = 'test.pt'
41
42
43
    classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
               '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    @property
    def train_labels(self):
        warnings.warn("train_labels has been renamed targets")
        return self.targets

    @property
    def test_labels(self):
        warnings.warn("test_labels has been renamed targets")
        return self.targets

    @property
    def train_data(self):
        warnings.warn("train_data has been renamed data")
        return self.data

    @property
    def test_data(self):
        warnings.warn("test_data has been renamed data")
        return self.data

64
65
66
67
68
69
70
71
    def __init__(
            self,
            root: str,
            train: bool = True,
            transform: Optional[Callable] = None,
            target_transform: Optional[Callable] = None,
            download: bool = False,
    ) -> None:
72
73
        super(MNIST, self).__init__(root, transform=transform,
                                    target_transform=target_transform)
74
        self.train = train  # training set or test set
Tian Qi Chen's avatar
Tian Qi Chen committed
75
76
77
78
79

        if download:
            self.download()

        if not self._check_exists():
80
81
            raise RuntimeError('Dataset not found.' +
                               ' You can use download=True to download it')
Tian Qi Chen's avatar
Tian Qi Chen committed
82
83

        if self.train:
84
            data_file = self.training_file
Tian Qi Chen's avatar
Tian Qi Chen committed
85
        else:
86
87
            data_file = self.test_file
        self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file))
Tian Qi Chen's avatar
Tian Qi Chen committed
88

89
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
90
91
92
93
94
95
96
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
97
        img, target = self.data[index], int(self.targets[index])
Tian Qi Chen's avatar
Tian Qi Chen committed
98
99
100
101
102
103
104
105
106
107
108
109
110

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img.numpy(), mode='L')

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

111
    def __len__(self) -> int:
112
        return len(self.data)
Tian Qi Chen's avatar
Tian Qi Chen committed
113

114
    @property
115
    def raw_folder(self) -> str:
116
117
118
        return os.path.join(self.root, self.__class__.__name__, 'raw')

    @property
119
    def processed_folder(self) -> str:
120
121
122
        return os.path.join(self.root, self.__class__.__name__, 'processed')

    @property
123
    def class_to_idx(self) -> Dict[str, int]:
124
125
        return {_class: i for i, _class in enumerate(self.classes)}

126
    def _check_exists(self) -> bool:
127
128
129
130
        return (os.path.exists(os.path.join(self.processed_folder,
                                            self.training_file)) and
                os.path.exists(os.path.join(self.processed_folder,
                                            self.test_file)))
131

132
    def download(self) -> None:
133
        """Download the MNIST data if it doesn't exist in processed_folder already."""
Tian Qi Chen's avatar
Tian Qi Chen committed
134
135
136
137

        if self._check_exists():
            return

138
139
        os.makedirs(self.raw_folder, exist_ok=True)
        os.makedirs(self.processed_folder, exist_ok=True)
Tian Qi Chen's avatar
Tian Qi Chen committed
140

141
        # download files
142
        for url, md5 in self.resources:
Tian Qi Chen's avatar
Tian Qi Chen committed
143
            filename = url.rpartition('/')[2]
144
            download_and_extract_archive(url, download_root=self.raw_folder, filename=filename, md5=md5)
Tian Qi Chen's avatar
Tian Qi Chen committed
145
146

        # process and save as torch files
Adam Paszke's avatar
Adam Paszke committed
147
148
        print('Processing...')

Tian Qi Chen's avatar
Tian Qi Chen committed
149
        training_set = (
150
151
            read_image_file(os.path.join(self.raw_folder, 'train-images-idx3-ubyte')),
            read_label_file(os.path.join(self.raw_folder, 'train-labels-idx1-ubyte'))
Tian Qi Chen's avatar
Tian Qi Chen committed
152
153
        )
        test_set = (
154
155
            read_image_file(os.path.join(self.raw_folder, 't10k-images-idx3-ubyte')),
            read_label_file(os.path.join(self.raw_folder, 't10k-labels-idx1-ubyte'))
Tian Qi Chen's avatar
Tian Qi Chen committed
156
        )
157
        with open(os.path.join(self.processed_folder, self.training_file), 'wb') as f:
Tian Qi Chen's avatar
Tian Qi Chen committed
158
            torch.save(training_set, f)
159
        with open(os.path.join(self.processed_folder, self.test_file), 'wb') as f:
Tian Qi Chen's avatar
Tian Qi Chen committed
160
161
162
163
            torch.save(test_set, f)

        print('Done!')

164
    def extra_repr(self) -> str:
165
        return "Split: {}".format("Train" if self.train is True else "Test")
166

167

168
class FashionMNIST(MNIST):
169
170
171
    """`Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset.

    Args:
172
173
        root (string): Root directory of dataset where ``Fashion-MNIST/processed/training.pt``
            and  ``Fashion-MNIST/processed/test.pt`` exist.
174
175
176
177
178
179
180
181
182
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
183
    """
184
185
186
187
188
189
190
191
192
    resources = [
        ("http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz",
         "8d4fb7e6c68d591d4c3dfef9ec88bf0d"),
        ("http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz",
         "25c81989df183df01b3e8a0aad5dffbe"),
        ("http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz",
         "bef4ecab320f06d8554ea6380940ec79"),
        ("http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz",
         "bb300cfdad3c16e7a12a480ee83cd310")
193
    ]
194
195
    classes = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal',
               'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
196
197


hysts's avatar
hysts committed
198
199
200
201
class KMNIST(MNIST):
    """`Kuzushiji-MNIST <https://github.com/rois-codh/kmnist>`_ Dataset.

    Args:
202
203
        root (string): Root directory of dataset where ``KMNIST/processed/training.pt``
            and  ``KMNIST/processed/test.pt`` exist.
hysts's avatar
hysts committed
204
205
206
207
208
209
210
211
212
213
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
214
215
216
217
218
    resources = [
        ("http://codh.rois.ac.jp/kmnist/dataset/kmnist/train-images-idx3-ubyte.gz", "bdb82020997e1d708af4cf47b453dcf7"),
        ("http://codh.rois.ac.jp/kmnist/dataset/kmnist/train-labels-idx1-ubyte.gz", "e144d726b3acfaa3e44228e80efcd344"),
        ("http://codh.rois.ac.jp/kmnist/dataset/kmnist/t10k-images-idx3-ubyte.gz", "5c965bf0a639b31b8f53240b1b52f4d7"),
        ("http://codh.rois.ac.jp/kmnist/dataset/kmnist/t10k-labels-idx1-ubyte.gz", "7320c461ea6c1c855c0b718fb2a4b134")
hysts's avatar
hysts committed
219
220
221
222
    ]
    classes = ['o', 'ki', 'su', 'tsu', 'na', 'ha', 'ma', 'ya', 're', 'wo']


223
class EMNIST(MNIST):
Alex Alemi's avatar
Alex Alemi committed
224
    """`EMNIST <https://www.westernsydney.edu.au/bens/home/reproducible_research/emnist>`_ Dataset.
225
226

    Args:
227
228
        root (string): Root directory of dataset where ``EMNIST/processed/training.pt``
            and  ``EMNIST/processed/test.pt`` exist.
229
230
231
232
233
234
235
236
237
238
239
240
241
        split (string): The dataset has 6 different splits: ``byclass``, ``bymerge``,
            ``balanced``, ``letters``, ``digits`` and ``mnist``. This argument specifies
            which one to use.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
Philip Meier's avatar
Philip Meier committed
242
243
244
245
246
    # Updated URL from https://www.nist.gov/node/1298471/emnist-dataset since the
    # _official_ download link
    # https://cloudstor.aarnet.edu.au/plus/s/ZNmuFiuQTqZlu9W/download
    # is (currently) unavailable
    url = 'http://www.itl.nist.gov/iaui/vip/cs_links/EMNIST/gzip.zip'
247
    md5 = "58c8d27c78d21e728a6bc7b3cc06412e"
248
    splits = ('byclass', 'bymerge', 'balanced', 'letters', 'digits', 'mnist')
249
250
251
252
253
254
255
256
257
258
259
    # Merged Classes assumes Same structure for both uppercase and lowercase version
    _merged_classes = set(['C', 'I', 'J', 'K', 'L', 'M', 'O', 'P', 'S', 'U', 'V', 'W', 'X', 'Y', 'Z'])
    _all_classes = set(list(string.digits + string.ascii_letters))
    classes_split_dict = {
        'byclass': list(_all_classes),
        'bymerge': sorted(list(_all_classes - _merged_classes)),
        'balanced': sorted(list(_all_classes - _merged_classes)),
        'letters': list(string.ascii_lowercase),
        'digits': list(string.digits),
        'mnist': list(string.digits),
    }
260

261
    def __init__(self, root: str, split: str, **kwargs: Any) -> None:
262
        self.split = verify_str_arg(split, "split", self.splits)
263
264
265
        self.training_file = self._training_file(split)
        self.test_file = self._test_file(split)
        super(EMNIST, self).__init__(root, **kwargs)
266
        self.classes = self.classes_split_dict[self.split]
Tian Qi Chen's avatar
Tian Qi Chen committed
267

268
    @staticmethod
269
    def _training_file(split) -> str:
270
271
        return 'training_{}.pt'.format(split)

272
    @staticmethod
273
    def _test_file(split) -> str:
274
275
        return 'test_{}.pt'.format(split)

276
    def download(self) -> None:
277
278
        """Download the EMNIST data if it doesn't exist in processed_folder already."""
        import shutil
279

280
281
282
        if self._check_exists():
            return

283
284
        os.makedirs(self.raw_folder, exist_ok=True)
        os.makedirs(self.processed_folder, exist_ok=True)
285

286
        # download files
287
        print('Downloading and extracting zip archive')
288
        download_and_extract_archive(self.url, download_root=self.raw_folder, filename="emnist.zip",
289
                                     remove_finished=True, md5=self.md5)
290
        gzip_folder = os.path.join(self.raw_folder, 'gzip')
291
292
        for gzip_file in os.listdir(gzip_folder):
            if gzip_file.endswith('.gz'):
293
                extract_archive(os.path.join(gzip_folder, gzip_file), gzip_folder)
294
295
296
297
298

        # process and save as torch files
        for split in self.splits:
            print('Processing ' + split)
            training_set = (
299
300
                read_image_file(os.path.join(gzip_folder, 'emnist-{}-train-images-idx3-ubyte'.format(split))),
                read_label_file(os.path.join(gzip_folder, 'emnist-{}-train-labels-idx1-ubyte'.format(split)))
301
302
            )
            test_set = (
303
304
                read_image_file(os.path.join(gzip_folder, 'emnist-{}-test-images-idx3-ubyte'.format(split))),
                read_label_file(os.path.join(gzip_folder, 'emnist-{}-test-labels-idx1-ubyte'.format(split)))
305
            )
306
            with open(os.path.join(self.processed_folder, self._training_file(split)), 'wb') as f:
307
                torch.save(training_set, f)
308
            with open(os.path.join(self.processed_folder, self._test_file(split)), 'wb') as f:
309
                torch.save(test_set, f)
310
        shutil.rmtree(gzip_folder)
311
312
313
314

        print('Done!')


315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
class QMNIST(MNIST):
    """`QMNIST <https://github.com/facebookresearch/qmnist>`_ Dataset.

    Args:
        root (string): Root directory of dataset whose ``processed''
            subdir contains torch binary files with the datasets.
        what (string,optional): Can be 'train', 'test', 'test10k',
            'test50k', or 'nist' for respectively the mnist compatible
            training set, the 60k qmnist testing set, the 10k qmnist
            examples that match the mnist testing set, the 50k
            remaining qmnist testing examples, or all the nist
            digits. The default is to select 'train' or 'test'
            according to the compatibility argument 'train'.
        compat (bool,optional): A boolean that says whether the target
            for each example is class number (for compatibility with
            the MNIST dataloader) or a torch vector containing the
            full qmnist information. Default=True.
        download (bool, optional): If true, downloads the dataset from
            the internet and puts it in root directory. If dataset is
            already downloaded, it is not downloaded again.
        transform (callable, optional): A function/transform that
            takes in an PIL image and returns a transformed
            version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform
            that takes in the target and transforms it.
        train (bool,optional,compatibility): When argument 'what' is
            not specified, this boolean decides whether to load the
            training set ot the testing set.  Default: True.

    """

    subsets = {
        'train': 'train',
348
349
350
        'test': 'test',
        'test10k': 'test',
        'test50k': 'test',
351
352
        'nist': 'nist'
    }
353
    resources: Dict[str, List[Tuple[str, str]]] = {  # type: ignore[assignment]
354
355
356
357
358
359
360
361
362
363
364
365
        'train': [('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-images-idx3-ubyte.gz',
                   'ed72d4157d28c017586c42bc6afe6370'),
                  ('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-labels-idx2-int.gz',
                   '0058f8dd561b90ffdd0f734c6a30e5e4')],
        'test': [('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-images-idx3-ubyte.gz',
                  '1394631089c404de565df7b7aeaf9412'),
                 ('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-labels-idx2-int.gz',
                  '5b5b05890a5e13444e108efe57b788aa')],
        'nist': [('https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-images-idx3-ubyte.xz',
                  '7f124b3b8ab81486c9d8c2749c17f834'),
                 ('https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-labels-idx2-int.xz',
                  '5ed0e788978e45d4a8bd4b7caec3d79d')]
366
367
368
369
    }
    classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
               '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']

370
371
372
373
    def __init__(
            self, root: str, what: Optional[str] = None, compat: bool = True,
            train: bool = True, **kwargs: Any
    ) -> None:
374
375
        if what is None:
            what = 'train' if train else 'test'
376
        self.what = verify_str_arg(what, "what", tuple(self.subsets.keys()))
377
378
379
380
381
382
        self.compat = compat
        self.data_file = what + '.pt'
        self.training_file = self.data_file
        self.test_file = self.data_file
        super(QMNIST, self).__init__(root, train, **kwargs)

383
    def download(self) -> None:
384
385
386
387
388
        """Download the QMNIST data if it doesn't exist in processed_folder already.
           Note that we only download what has been asked for (argument 'what').
        """
        if self._check_exists():
            return
389
390
        os.makedirs(self.raw_folder, exist_ok=True)
        os.makedirs(self.processed_folder, exist_ok=True)
391
        split = self.resources[self.subsets[self.what]]
392
393
394
        files = []

        # download data files if not already there
395
        for url, md5 in split:
396
397
398
            filename = url.rpartition('/')[2]
            file_path = os.path.join(self.raw_folder, filename)
            if not os.path.isfile(file_path):
399
                download_url(url, root=self.raw_folder, filename=filename, md5=md5)
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
            files.append(file_path)

        # process and save as torch files
        print('Processing...')
        data = read_sn3_pascalvincent_tensor(files[0])
        assert(data.dtype == torch.uint8)
        assert(data.ndimension() == 3)
        targets = read_sn3_pascalvincent_tensor(files[1]).long()
        assert(targets.ndimension() == 2)
        if self.what == 'test10k':
            data = data[0:10000, :, :].clone()
            targets = targets[0:10000, :].clone()
        if self.what == 'test50k':
            data = data[10000:, :, :].clone()
            targets = targets[10000:, :].clone()
        with open(os.path.join(self.processed_folder, self.data_file), 'wb') as f:
            torch.save((data, targets), f)

418
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
419
420
421
422
423
424
425
426
427
428
429
        # redefined to handle the compat flag
        img, target = self.data[index], self.targets[index]
        img = Image.fromarray(img.numpy(), mode='L')
        if self.transform is not None:
            img = self.transform(img)
        if self.compat:
            target = int(target[0])
        if self.target_transform is not None:
            target = self.target_transform(target)
        return img, target

430
    def extra_repr(self) -> str:
431
432
433
        return "Split: {}".format(self.what)


434
def get_int(b: bytes) -> int:
435
    return int(codecs.encode(b, 'hex'), 16)
Tian Qi Chen's avatar
Tian Qi Chen committed
436

437

438
def open_maybe_compressed_file(path: Union[str, IO]) -> IO:
439
440
441
442
443
444
445
446
447
448
449
450
451
452
    """Return a file object that possibly decompresses 'path' on the fly.
       Decompression occurs when argument `path` is a string and ends with '.gz' or '.xz'.
    """
    if not isinstance(path, torch._six.string_classes):
        return path
    if path.endswith('.gz'):
        import gzip
        return gzip.open(path, 'rb')
    if path.endswith('.xz'):
        import lzma
        return lzma.open(path, 'rb')
    return open(path, 'rb')


453
454
455
456
457
458
459
460
461
462
463
SN3_PASCALVINCENT_TYPEMAP = {
    8: (torch.uint8, np.uint8, np.uint8),
    9: (torch.int8, np.int8, np.int8),
    11: (torch.int16, np.dtype('>i2'), 'i2'),
    12: (torch.int32, np.dtype('>i4'), 'i4'),
    13: (torch.float32, np.dtype('>f4'), 'f4'),
    14: (torch.float64, np.dtype('>f8'), 'f8')
}


def read_sn3_pascalvincent_tensor(path: Union[str, IO], strict: bool = True) -> torch.Tensor:
464
465
466
467
468
469
470
471
472
473
474
475
    """Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-io.lsh').
       Argument may be a filename, compressed filename, or file object.
    """
    # read
    with open_maybe_compressed_file(path) as f:
        data = f.read()
    # parse
    magic = get_int(data[0:4])
    nd = magic % 256
    ty = magic // 256
    assert nd >= 1 and nd <= 3
    assert ty >= 8 and ty <= 14
476
    m = SN3_PASCALVINCENT_TYPEMAP[ty]
477
478
479
480
481
482
    s = [get_int(data[4 * (i + 1): 4 * (i + 2)]) for i in range(nd)]
    parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1)))
    assert parsed.shape[0] == np.prod(s) or not strict
    return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)


483
def read_label_file(path: str) -> torch.Tensor:
Tian Qi Chen's avatar
Tian Qi Chen committed
484
    with open(path, 'rb') as f:
485
486
487
488
        x = read_sn3_pascalvincent_tensor(f, strict=False)
    assert(x.dtype == torch.uint8)
    assert(x.ndimension() == 1)
    return x.long()
Tian Qi Chen's avatar
Tian Qi Chen committed
489

490

491
def read_image_file(path: str) -> torch.Tensor:
Tian Qi Chen's avatar
Tian Qi Chen committed
492
    with open(path, 'rb') as f:
493
494
495
496
        x = read_sn3_pascalvincent_tensor(f, strict=False)
    assert(x.dtype == torch.uint8)
    assert(x.ndimension() == 3)
    return x