train.py 11.5 KB
Newer Older
flauted's avatar
flauted committed
1
2
3
4
5
6
7
r"""PyTorch Detection Training.

To run in a multi-gpu environment, use the distributed launcher::

    python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
        train.py ... --world-size $NGPU

8
9
10
The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
    --lr 0.02 --batch-size 2 --world-size 8
If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
11
12
13
14
15
16
17
18

On top of that, for training Faster/Mask R-CNN, the default hyperparameters are
    --epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3

Also, if you train Keypoint R-CNN, the default hyperparameters are
    --epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3
Because the number of images is smaller in the person keypoint subset of COCO,
the number of epochs should be adapted so that we have the same number of iterations.
flauted's avatar
flauted committed
19
"""
20
21
22
23
import datetime
import os
import time

24
import presets
25
26
27
28
29
import torch
import torch.utils.data
import torchvision
import torchvision.models.detection
import torchvision.models.detection.mask_rcnn
30
import utils
31
32
from coco_utils import get_coco, get_coco_kp
from engine import train_one_epoch, evaluate
33
from group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
34
35


flauted's avatar
flauted committed
36
def get_dataset(name, image_set, transform, data_path):
37
    paths = {"coco": (data_path, get_coco, 91), "coco_kp": (data_path, get_coco_kp, 2)}
38
39
40
41
42
43
    p, ds_fn, num_classes = paths[name]

    ds = ds_fn(p, image_set=image_set, transforms=transform)
    return ds, num_classes


44
45
def get_transform(train, args):
    if train:
46
47
48
49
50
        return presets.DetectionPresetTrain(data_augmentation=args.data_augmentation)
    elif args.weights and args.test_only:
        weights = torchvision.models.get_weight(args.weights)
        trans = weights.transforms()
        return lambda img, target: (trans(img), target)
51
    else:
52
        return presets.DetectionPresetEval()
53
54


55
56
def get_args_parser(add_help=True):
    import argparse
57
58
59

    parser = argparse.ArgumentParser(description="PyTorch Detection Training", add_help=add_help)

60
61
62
63
    parser.add_argument("--data-path", default="/datasets01/COCO/022719/", type=str, help="dataset path")
    parser.add_argument("--dataset", default="coco", type=str, help="dataset name")
    parser.add_argument("--model", default="maskrcnn_resnet50_fpn", type=str, help="model name")
    parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
64
65
66
67
68
69
70
    parser.add_argument(
        "-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
    )
    parser.add_argument("--epochs", default=26, type=int, metavar="N", help="number of total epochs to run")
    parser.add_argument(
        "-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers (default: 4)"
    )
71
    parser.add_argument("--opt", default="sgd", type=str, help="optimizer")
72
73
74
75
    parser.add_argument(
        "--lr",
        default=0.02,
        type=float,
76
        help="initial learning rate, 0.02 is the default value for training on 8 gpus and 2 images_per_gpu",
77
78
79
80
81
82
83
84
85
86
87
    )
    parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
    parser.add_argument(
        "--wd",
        "--weight-decay",
        default=1e-4,
        type=float,
        metavar="W",
        help="weight decay (default: 1e-4)",
        dest="weight_decay",
    )
88
89
90
91
92
93
    parser.add_argument(
        "--norm-weight-decay",
        default=None,
        type=float,
        help="weight decay for Normalization layers (default: None, same value as --wd)",
    )
94
95
96
    parser.add_argument(
        "--lr-scheduler", default="multisteplr", type=str, help="name of lr scheduler (default: multisteplr)"
    )
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    parser.add_argument(
        "--lr-step-size", default=8, type=int, help="decrease lr every step-size epochs (multisteplr scheduler only)"
    )
    parser.add_argument(
        "--lr-steps",
        default=[16, 22],
        nargs="+",
        type=int,
        help="decrease lr every step-size epochs (multisteplr scheduler only)",
    )
    parser.add_argument(
        "--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma (multisteplr scheduler only)"
    )
    parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
111
112
    parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
    parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
113
114
115
116
117
118
    parser.add_argument("--start_epoch", default=0, type=int, help="start epoch")
    parser.add_argument("--aspect-ratio-group-factor", default=3, type=int)
    parser.add_argument("--rpn-score-thresh", default=None, type=float, help="rpn score threshold for faster-rcnn")
    parser.add_argument(
        "--trainable-backbone-layers", default=None, type=int, help="number of trainable layers of backbone"
    )
119
120
121
    parser.add_argument(
        "--data-augmentation", default="hflip", type=str, help="data augmentation policy (default: hflip)"
    )
122
123
124
125
126
127
    parser.add_argument(
        "--sync-bn",
        dest="sync_bn",
        help="Use sync batch norm",
        action="store_true",
    )
128
129
130
131
132
133
134
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )

135
136
137
138
    parser.add_argument(
        "--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
    )

139
    # distributed training parameters
140
    parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
141
    parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
142
    parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")
143
    parser.add_argument("--weights-backbone", default=None, type=str, help="the backbone weights enum name to load")
144

145
146
147
    # Mixed precision training parameters
    parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training")

148
149
150
    return parser


151
def main(args):
152
153
154
    if args.output_dir:
        utils.mkdir(args.output_dir)

155
156
157
158
159
    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

160
161
162
    if args.use_deterministic_algorithms:
        torch.use_deterministic_algorithms(True)

163
164
165
    # Data loading code
    print("Loading data")

166
167
    dataset, num_classes = get_dataset(args.dataset, "train", get_transform(True, args), args.data_path)
    dataset_test, _ = get_dataset(args.dataset, "val", get_transform(False, args), args.data_path)
168
169
170
171

    print("Creating data loaders")
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
172
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test, shuffle=False)
173
174
175
176
177
178
179
180
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    if args.aspect_ratio_group_factor >= 0:
        group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
        train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
    else:
181
        train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, args.batch_size, drop_last=True)
182
183

    data_loader = torch.utils.data.DataLoader(
184
185
        dataset, batch_sampler=train_batch_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
    )
186
187

    data_loader_test = torch.utils.data.DataLoader(
188
189
        dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
    )
190
191

    print("Creating model")
192
    kwargs = {"trainable_backbone_layers": args.trainable_backbone_layers}
193
194
    if args.data_augmentation in ["multiscale", "lsj"]:
        kwargs["_skip_resize"] = True
195
    if "rcnn" in args.model:
196
197
        if args.rpn_score_thresh is not None:
            kwargs["rpn_score_thresh"] = args.rpn_score_thresh
198
199
200
    model = torchvision.models.detection.__dict__[args.model](
        weights=args.weights, weights_backbone=args.weights_backbone, num_classes=num_classes, **kwargs
    )
201
    model.to(device)
202
203
    if args.distributed and args.sync_bn:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
204
205
206
207
208
209

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    if args.norm_weight_decay is None:
        parameters = [p for p in model.parameters() if p.requires_grad]
    else:
        param_groups = torchvision.ops._utils.split_normalization_params(model)
        wd_groups = [args.norm_weight_decay, args.weight_decay]
        parameters = [{"params": p, "weight_decay": w} for p, w in zip(param_groups, wd_groups) if p]

    opt_name = args.opt.lower()
    if opt_name.startswith("sgd"):
        optimizer = torch.optim.SGD(
            parameters,
            lr=args.lr,
            momentum=args.momentum,
            weight_decay=args.weight_decay,
            nesterov="nesterov" in opt_name,
        )
    elif opt_name == "adamw":
        optimizer = torch.optim.AdamW(parameters, lr=args.lr, weight_decay=args.weight_decay)
    else:
        raise RuntimeError(f"Invalid optimizer {args.opt}. Only SGD and AdamW are supported.")
230

231
232
    scaler = torch.cuda.amp.GradScaler() if args.amp else None

233
    args.lr_scheduler = args.lr_scheduler.lower()
234
    if args.lr_scheduler == "multisteplr":
235
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
236
    elif args.lr_scheduler == "cosineannealinglr":
237
238
        lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
    else:
239
        raise RuntimeError(
240
            f"Invalid lr scheduler '{args.lr_scheduler}'. Only MultiStepLR and CosineAnnealingLR are supported."
241
        )
Francisco Massa's avatar
Francisco Massa committed
242

243
    if args.resume:
244
245
246
247
248
        checkpoint = torch.load(args.resume, map_location="cpu")
        model_without_ddp.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
        args.start_epoch = checkpoint["epoch"] + 1
249
250
        if args.amp:
            scaler.load_state_dict(checkpoint["scaler"])
Francisco Massa's avatar
Francisco Massa committed
251

252
    if args.test_only:
253
        torch.backends.cudnn.deterministic = True
254
255
256
257
258
        evaluate(model, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
MultiK's avatar
MultiK committed
259
    for epoch in range(args.start_epoch, args.epochs):
260
261
        if args.distributed:
            train_sampler.set_epoch(epoch)
262
        train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq, scaler)
263
264
        lr_scheduler.step()
        if args.output_dir:
265
            checkpoint = {
266
267
268
269
270
                "model": model_without_ddp.state_dict(),
                "optimizer": optimizer.state_dict(),
                "lr_scheduler": lr_scheduler.state_dict(),
                "args": args,
                "epoch": epoch,
271
            }
272
273
            if args.amp:
                checkpoint["scaler"] = scaler.state_dict()
274
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
275
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
276
277
278
279
280
281

        # evaluate after every epoch
        evaluate(model, data_loader_test, device=device)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
282
    print(f"Training time {total_time_str}")
283
284
285


if __name__ == "__main__":
286
    args = get_args_parser().parse_args()
287
    main(args)