test_backbone_utils.py 13.1 KB
Newer Older
1
import random
2
from itertools import chain
3
from typing import Mapping, Sequence
4

5
import pytest
6
import torch
7
8
9
from common_utils import set_rng_seed
from torchvision import models
from torchvision.models._utils import IntermediateLayerGetter
10
from torchvision.models.detection.backbone_utils import BackboneWithFPN, mobilenet_backbone, resnet_fpn_backbone
11
from torchvision.models.feature_extraction import create_feature_extractor, get_graph_node_names
12
13
14
15


def get_available_models():
    # TODO add a registration mechanism to torchvision.models
16
    return [k for k, v in models.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]
17

18

19
@pytest.mark.parametrize("backbone_name", ("resnet18", "resnet50"))
20
def test_resnet_fpn_backbone(backbone_name):
21
    x = torch.rand(1, 3, 300, 300, dtype=torch.float32, device="cpu")
22
23
24
    model = resnet_fpn_backbone(backbone_name=backbone_name, pretrained=False)
    assert isinstance(model, BackboneWithFPN)
    y = model(x)
25
    assert list(y.keys()) == ["0", "1", "2", "3", "pool"]
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    with pytest.raises(ValueError, match=r"Trainable layers should be in the range"):
        resnet_fpn_backbone(backbone_name=backbone_name, pretrained=False, trainable_layers=6)
    with pytest.raises(ValueError, match=r"Each returned layer should be in the range"):
        resnet_fpn_backbone(backbone_name, False, returned_layers=[0, 1, 2, 3])
    with pytest.raises(ValueError, match=r"Each returned layer should be in the range"):
        resnet_fpn_backbone(backbone_name, False, returned_layers=[2, 3, 4, 5])


@pytest.mark.parametrize("backbone_name", ("mobilenet_v2", "mobilenet_v3_large", "mobilenet_v3_small"))
def test_mobilenet_backbone(backbone_name):
    with pytest.raises(ValueError, match=r"Trainable layers should be in the range"):
        mobilenet_backbone(backbone_name=backbone_name, pretrained=False, fpn=False, trainable_layers=-1)
    with pytest.raises(ValueError, match=r"Each returned layer should be in the range"):
        mobilenet_backbone(backbone_name, False, fpn=True, returned_layers=[-1, 0, 1, 2])
    with pytest.raises(ValueError, match=r"Each returned layer should be in the range"):
        mobilenet_backbone(backbone_name, False, fpn=True, returned_layers=[3, 4, 5, 6])
43
44
45
46
    model_fpn = mobilenet_backbone(backbone_name, False, fpn=True)
    assert isinstance(model_fpn, BackboneWithFPN)
    model = mobilenet_backbone(backbone_name, False, fpn=False)
    assert isinstance(model, torch.nn.Sequential)
47

48
49
50
51
52
53

# Needed by TestFxFeatureExtraction.test_leaf_module_and_function
def leaf_function(x):
    return int(x)


54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Needed by TestFXFeatureExtraction. Checking that node naming conventions
# are respected. Particularly the index postfix of repeated node names
class TestSubModule(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.relu = torch.nn.ReLU()

    def forward(self, x):
        x = x + 1
        x = x + 1
        x = self.relu(x)
        x = self.relu(x)
        return x


class TestModule(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.submodule = TestSubModule()
        self.relu = torch.nn.ReLU()

    def forward(self, x):
        x = self.submodule(x)
        x = x + 1
        x = x + 1
        x = self.relu(x)
        x = self.relu(x)
        return x


test_module_nodes = [
85
86
87
88
89
90
91
92
93
94
    "x",
    "submodule.add",
    "submodule.add_1",
    "submodule.relu",
    "submodule.relu_1",
    "add",
    "add_1",
    "relu",
    "relu_1",
]
95
96


97
class TestFxFeatureExtraction:
98
99
    inp = torch.rand(1, 3, 224, 224, dtype=torch.float32, device="cpu")
    model_defaults = {"num_classes": 1, "pretrained": False}
100
    leaf_modules = []
101
102
103
104
105
106

    def _create_feature_extractor(self, *args, **kwargs):
        """
        Apply leaf modules
        """
        tracer_kwargs = {}
107
108
        if "tracer_kwargs" not in kwargs:
            tracer_kwargs = {"leaf_modules": self.leaf_modules}
109
        else:
110
111
            tracer_kwargs = kwargs.pop("tracer_kwargs")
        return create_feature_extractor(*args, **kwargs, tracer_kwargs=tracer_kwargs, suppress_diff_warning=True)
112
113
114

    def _get_return_nodes(self, model):
        set_rng_seed(0)
115
116
117
118
119
120
121
122
123
124
        exclude_nodes_filter = [
            "getitem",
            "floordiv",
            "size",
            "chunk",
            "_assert",
            "eq",
            "dim",
            "getattr",
        ]
125
        train_nodes, eval_nodes = get_graph_node_names(
126
127
            model, tracer_kwargs={"leaf_modules": self.leaf_modules}, suppress_diff_warning=True
        )
128
129
        # Get rid of any nodes that don't return tensors as they cause issues
        # when testing backward pass.
130
131
        train_nodes = [n for n in train_nodes if not any(x in n for x in exclude_nodes_filter)]
        eval_nodes = [n for n in eval_nodes if not any(x in n for x in exclude_nodes_filter)]
132
133
        return random.sample(train_nodes, 10), random.sample(eval_nodes, 10)

134
    @pytest.mark.parametrize("model_name", get_available_models())
135
136
137
138
139
140
    def test_build_fx_feature_extractor(self, model_name):
        set_rng_seed(0)
        model = models.__dict__[model_name](**self.model_defaults).eval()
        train_return_nodes, eval_return_nodes = self._get_return_nodes(model)
        # Check that it works with both a list and dict for return nodes
        self._create_feature_extractor(
141
142
            model, train_return_nodes={v: v for v in train_return_nodes}, eval_return_nodes=eval_return_nodes
        )
143
        self._create_feature_extractor(
144
145
            model, train_return_nodes=train_return_nodes, eval_return_nodes=eval_return_nodes
        )
146
        # Check must specify return nodes
147
        with pytest.raises(ValueError):
148
149
150
            self._create_feature_extractor(model)
        # Check return_nodes and train_return_nodes / eval_return nodes
        # mutual exclusivity
151
        with pytest.raises(ValueError):
152
            self._create_feature_extractor(
153
154
                model, return_nodes=train_return_nodes, train_return_nodes=train_return_nodes
            )
155
        # Check train_return_nodes / eval_return nodes must both be specified
156
        with pytest.raises(ValueError):
157
            self._create_feature_extractor(model, train_return_nodes=train_return_nodes)
158
159
160
        # Check invalid node name raises ValueError
        with pytest.raises(ValueError):
            # First just double check that this node really doesn't exist
161
162
            if not any(n.startswith("l") or n.startswith("l.") for n in chain(train_return_nodes, eval_return_nodes)):
                self._create_feature_extractor(model, train_return_nodes=["l"], eval_return_nodes=["l"])
163
164
165
            else:  # otherwise skip this check
                raise ValueError

166
167
168
169
170
    def test_node_name_conventions(self):
        model = TestModule()
        train_nodes, _ = get_graph_node_names(model)
        assert all(a == b for a, b in zip(train_nodes, test_module_nodes))

171
    @pytest.mark.parametrize("model_name", get_available_models())
172
173
174
175
    def test_forward_backward(self, model_name):
        model = models.__dict__[model_name](**self.model_defaults).train()
        train_return_nodes, eval_return_nodes = self._get_return_nodes(model)
        model = self._create_feature_extractor(
176
177
            model, train_return_nodes=train_return_nodes, eval_return_nodes=eval_return_nodes
        )
178
        out = model(self.inp)
179
180
181
182
183
184
185
186
187
188
        out_agg = 0
        for node_out in out.values():
            if isinstance(node_out, Sequence):
                out_agg += sum(o.mean() for o in node_out if o is not None)
            elif isinstance(node_out, Mapping):
                out_agg += sum(o.mean() for o in node_out.values() if o is not None)
            else:
                # Assume that the only other alternative at this point is a Tensor
                out_agg += node_out.mean()
        out_agg.backward()
189
190
191

    def test_feature_extraction_methods_equivalence(self):
        model = models.resnet18(**self.model_defaults).eval()
192
193
194
        return_layers = {"layer1": "layer1", "layer2": "layer2", "layer3": "layer3", "layer4": "layer4"}

        ilg_model = IntermediateLayerGetter(model, return_layers).eval()
195
196
197
        fx_model = self._create_feature_extractor(model, return_layers)

        # Check that we have same parameters
198
        for (n1, p1), (n2, p2) in zip(ilg_model.named_parameters(), fx_model.named_parameters()):
199
200
201
202
203
204
205
206
207
208
209
            assert n1 == n2
            assert p1.equal(p2)

        # And that ouputs match
        with torch.no_grad():
            ilg_out = ilg_model(self.inp)
            fgn_out = fx_model(self.inp)
        assert all(k1 == k2 for k1, k2 in zip(ilg_out.keys(), fgn_out.keys()))
        for k in ilg_out.keys():
            assert ilg_out[k].equal(fgn_out[k])

210
    @pytest.mark.parametrize("model_name", get_available_models())
211
212
213
214
215
    def test_jit_forward_backward(self, model_name):
        set_rng_seed(0)
        model = models.__dict__[model_name](**self.model_defaults).train()
        train_return_nodes, eval_return_nodes = self._get_return_nodes(model)
        model = self._create_feature_extractor(
216
217
            model, train_return_nodes=train_return_nodes, eval_return_nodes=eval_return_nodes
        )
218
219
        model = torch.jit.script(model)
        fgn_out = model(self.inp)
220
221
222
223
224
225
226
227
228
229
        out_agg = 0
        for node_out in fgn_out.values():
            if isinstance(node_out, Sequence):
                out_agg += sum(o.mean() for o in node_out if o is not None)
            elif isinstance(node_out, Mapping):
                out_agg += sum(o.mean() for o in node_out.values() if o is not None)
            else:
                # Assume that the only other alternative at this point is a Tensor
                out_agg += node_out.mean()
        out_agg.backward()
230
231
232
233
234

    def test_train_eval(self):
        class TestModel(torch.nn.Module):
            def __init__(self):
                super().__init__()
235
                self.dropout = torch.nn.Dropout(p=1.0)
236
237
238
239
240
241
242
243
244
245
246
247
248

            def forward(self, x):
                x = x.mean()
                x = self.dropout(x)  # dropout
                if self.training:
                    x += 100  # add
                else:
                    x *= 0  # mul
                x -= 0  # sub
                return x

        model = TestModel()

249
250
        train_return_nodes = ["dropout", "add", "sub"]
        eval_return_nodes = ["dropout", "mul", "sub"]
251
252
253
254

        def checks(model, mode):
            with torch.no_grad():
                out = model(torch.ones(10, 10))
255
            if mode == "train":
256
                # Check that dropout is respected
257
                assert out["dropout"].item() == 0
258
                # Check that control flow dependent on training_mode is respected
259
260
261
262
                assert out["sub"].item() == 100
                assert "add" in out
                assert "mul" not in out
            elif mode == "eval":
263
                # Check that dropout is respected
264
                assert out["dropout"].item() == 1
265
                # Check that control flow dependent on training_mode is respected
266
267
268
                assert out["sub"].item() == 0
                assert "mul" in out
                assert "add" not in out
269
270
271
272

        # Starting from train mode
        model.train()
        fx_model = self._create_feature_extractor(
273
274
            model, train_return_nodes=train_return_nodes, eval_return_nodes=eval_return_nodes
        )
275
276
277
278
        # Check that the models stay in their original training state
        assert model.training
        assert fx_model.training
        # Check outputs
279
        checks(fx_model, "train")
280
281
        # Check outputs after switching to eval mode
        fx_model.eval()
282
        checks(fx_model, "eval")
283
284
285
286

        # Starting from eval mode
        model.eval()
        fx_model = self._create_feature_extractor(
287
288
            model, train_return_nodes=train_return_nodes, eval_return_nodes=eval_return_nodes
        )
289
290
291
292
        # Check that the models stay in their original training state
        assert not model.training
        assert not fx_model.training
        # Check outputs
293
        checks(fx_model, "eval")
294
295
        # Check outputs after switching to train mode
        fx_model.train()
296
        checks(fx_model, "train")
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

    def test_leaf_module_and_function(self):
        class LeafModule(torch.nn.Module):
            def forward(self, x):
                # This would raise a TypeError if it were not in a leaf module
                int(x.shape[0])
                return torch.nn.functional.relu(x + 4)

        class TestModule(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = torch.nn.Conv2d(3, 1, 3)
                self.leaf_module = LeafModule()

            def forward(self, x):
                leaf_function(x.shape[0])
                x = self.conv(x)
                return self.leaf_module(x)

        model = self._create_feature_extractor(
317
318
319
320
            TestModule(),
            return_nodes=["leaf_module"],
            tracer_kwargs={"leaf_modules": [LeafModule], "autowrap_functions": [leaf_function]},
        ).train()
321
322

        # Check that LeafModule is not in the list of nodes
323
324
        assert "relu" not in [str(n) for n in model.graph.nodes]
        assert "leaf_module" in [str(n) for n in model.graph.nodes]
325
326
327
328

        # Check forward
        out = model(self.inp)
        # And backward
329
        out["leaf_module"].mean().backward()