clip_sampler.py 6.04 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
import math
import torch
from torch.utils.data import Sampler
import torch.distributed as dist
import torchvision.datasets.video_utils


class DistributedSampler(Sampler):
    """
    Extension of DistributedSampler, as discussed in
    https://github.com/pytorch/pytorch/issues/23430
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

    Example:
        dataset: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
        num_replicas: 4
        shuffle: False

    when group_size = 1
            RANK    |  shard_dataset
            =========================
            rank_0  |  [0, 4, 8, 12]
            rank_1  |  [1, 5, 9, 13]
            rank_2  |  [2, 6, 10, 0]
            rank_3  |  [3, 7, 11, 1]

    when group_size = 2

            RANK    |  shard_dataset
            =========================
            rank_0  |  [0, 1, 8, 9]
            rank_1  |  [2, 3, 10, 11]
            rank_2  |  [4, 5, 12, 13]
            rank_3  |  [6, 7, 0, 1]

35
36
    """

37
    def __init__(self, dataset, num_replicas=None, rank=None, shuffle=False, group_size=1):
38
39
40
41
42
43
44
45
        if num_replicas is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = dist.get_rank()
46
47
48
49
        assert len(dataset) % group_size == 0, (
            "dataset length must be a multiplier of group size"
            "dataset length: %d, group size: %d" % (len(dataset), group_size)
        )
50
        self.dataset = dataset
51
        self.group_size = group_size
52
53
54
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
55
56
57
58
59
        dataset_group_length = len(dataset) // group_size
        self.num_group_samples = int(
            math.ceil(dataset_group_length * 1.0 / self.num_replicas)
        )
        self.num_samples = self.num_group_samples * group_size
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
        self.total_size = self.num_samples * self.num_replicas
        self.shuffle = shuffle

    def __iter__(self):
        # deterministically shuffle based on epoch
        g = torch.Generator()
        g.manual_seed(self.epoch)
        if self.shuffle:
            indices = torch.randperm(len(self.dataset), generator=g).tolist()
        else:
            indices = list(range(len(self.dataset)))

        # add extra samples to make it evenly divisible
        indices += indices[:(self.total_size - len(indices))]
        assert len(indices) == self.total_size

76
77
78
79
80
        total_group_size = self.total_size // self.group_size
        indices = torch.reshape(
            torch.LongTensor(indices), (total_group_size, self.group_size)
        )

81
        # subsample
82
83
        indices = indices[self.rank:total_group_size:self.num_replicas, :]
        indices = torch.reshape(indices, (-1,)).tolist()
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        assert len(indices) == self.num_samples

        if isinstance(self.dataset, Sampler):
            orig_indices = list(iter(self.dataset))
            indices = [orig_indices[i] for i in indices]

        return iter(indices)

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch


class UniformClipSampler(torch.utils.data.Sampler):
    """
101
102
103
104
    Sample `num_video_clips_per_video` clips for each video, equally spaced.
    When number of unique clips in the video is fewer than num_video_clips_per_video,
    repeat the clips until `num_video_clips_per_video` clips are collected

105
106
    Arguments:
        video_clips (VideoClips): video clips to sample from
107
        num_clips_per_video (int): number of clips to be sampled per video
108
    """
109
    def __init__(self, video_clips, num_clips_per_video):
110
111
112
113
        if not isinstance(video_clips, torchvision.datasets.video_utils.VideoClips):
            raise TypeError("Expected video_clips to be an instance of VideoClips, "
                            "got {}".format(type(video_clips)))
        self.video_clips = video_clips
114
        self.num_clips_per_video = num_clips_per_video
115
116
117
118

    def __iter__(self):
        idxs = []
        s = 0
119
        # select num_clips_per_video for each video, uniformly spaced
120
121
        for c in self.video_clips.clips:
            length = len(c)
122
123
124
125
126
127
128
129
130
            if length == 0:
                # corner case where video decoding fails
                continue

            sampled = (
                torch.linspace(s, s + length - 1, steps=self.num_clips_per_video)
                .floor()
                .to(torch.int64)
            )
131
132
133
134
135
136
            s += length
            idxs.append(sampled)
        idxs = torch.cat(idxs).tolist()
        return iter(idxs)

    def __len__(self):
137
138
139
        return sum(
            self.num_clips_per_video for c in self.video_clips.clips if len(c) > 0
        )
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174


class RandomClipSampler(torch.utils.data.Sampler):
    """
    Samples at most `max_video_clips_per_video` clips for each video randomly

    Arguments:
        video_clips (VideoClips): video clips to sample from
        max_clips_per_video (int): maximum number of clips to be sampled per video
    """
    def __init__(self, video_clips, max_clips_per_video):
        if not isinstance(video_clips, torchvision.datasets.video_utils.VideoClips):
            raise TypeError("Expected video_clips to be an instance of VideoClips, "
                            "got {}".format(type(video_clips)))
        self.video_clips = video_clips
        self.max_clips_per_video = max_clips_per_video

    def __iter__(self):
        idxs = []
        s = 0
        # select at most max_clips_per_video for each video, randomly
        for c in self.video_clips.clips:
            length = len(c)
            size = min(length, self.max_clips_per_video)
            sampled = torch.randperm(length)[:size] + s
            s += length
            idxs.append(sampled)
        idxs = torch.cat(idxs)
        # shuffle all clips randomly
        perm = torch.randperm(len(idxs))
        idxs = idxs[perm].tolist()
        return iter(idxs)

    def __len__(self):
        return sum(min(len(c), self.max_clips_per_video) for c in self.video_clips.clips)