clip_sampler.py 4.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import math
import torch
from torch.utils.data import Sampler
import torch.distributed as dist
import torchvision.datasets.video_utils


class DistributedSampler(Sampler):
    """
    Extension of DistributedSampler, as discussed in
    https://github.com/pytorch/pytorch/issues/23430
    """

    def __init__(self, dataset, num_replicas=None, rank=None, shuffle=False):
        if num_replicas is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = dist.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
        self.total_size = self.num_samples * self.num_replicas
        self.shuffle = shuffle

    def __iter__(self):
        # deterministically shuffle based on epoch
        g = torch.Generator()
        g.manual_seed(self.epoch)
        if self.shuffle:
            indices = torch.randperm(len(self.dataset), generator=g).tolist()
        else:
            indices = list(range(len(self.dataset)))

        # add extra samples to make it evenly divisible
        indices += indices[:(self.total_size - len(indices))]
        assert len(indices) == self.total_size

        # subsample
        indices = indices[self.rank:self.total_size:self.num_replicas]
        assert len(indices) == self.num_samples

        if isinstance(self.dataset, Sampler):
            orig_indices = list(iter(self.dataset))
            indices = [orig_indices[i] for i in indices]

        return iter(indices)

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch


class UniformClipSampler(torch.utils.data.Sampler):
    """
63
64
65
66
    Sample `num_video_clips_per_video` clips for each video, equally spaced.
    When number of unique clips in the video is fewer than num_video_clips_per_video,
    repeat the clips until `num_video_clips_per_video` clips are collected

67
68
    Arguments:
        video_clips (VideoClips): video clips to sample from
69
        num_clips_per_video (int): number of clips to be sampled per video
70
    """
71
    def __init__(self, video_clips, num_clips_per_video):
72
73
74
75
        if not isinstance(video_clips, torchvision.datasets.video_utils.VideoClips):
            raise TypeError("Expected video_clips to be an instance of VideoClips, "
                            "got {}".format(type(video_clips)))
        self.video_clips = video_clips
76
        self.num_clips_per_video = num_clips_per_video
77
78
79
80

    def __iter__(self):
        idxs = []
        s = 0
81
        # select num_clips_per_video for each video, uniformly spaced
82
83
        for c in self.video_clips.clips:
            length = len(c)
84
85
86
87
88
89
90
91
92
            if length == 0:
                # corner case where video decoding fails
                continue

            sampled = (
                torch.linspace(s, s + length - 1, steps=self.num_clips_per_video)
                .floor()
                .to(torch.int64)
            )
93
94
95
96
97
98
            s += length
            idxs.append(sampled)
        idxs = torch.cat(idxs).tolist()
        return iter(idxs)

    def __len__(self):
99
100
101
        return sum(
            self.num_clips_per_video for c in self.video_clips.clips if len(c) > 0
        )
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136


class RandomClipSampler(torch.utils.data.Sampler):
    """
    Samples at most `max_video_clips_per_video` clips for each video randomly

    Arguments:
        video_clips (VideoClips): video clips to sample from
        max_clips_per_video (int): maximum number of clips to be sampled per video
    """
    def __init__(self, video_clips, max_clips_per_video):
        if not isinstance(video_clips, torchvision.datasets.video_utils.VideoClips):
            raise TypeError("Expected video_clips to be an instance of VideoClips, "
                            "got {}".format(type(video_clips)))
        self.video_clips = video_clips
        self.max_clips_per_video = max_clips_per_video

    def __iter__(self):
        idxs = []
        s = 0
        # select at most max_clips_per_video for each video, randomly
        for c in self.video_clips.clips:
            length = len(c)
            size = min(length, self.max_clips_per_video)
            sampled = torch.randperm(length)[:size] + s
            s += length
            idxs.append(sampled)
        idxs = torch.cat(idxs)
        # shuffle all clips randomly
        perm = torch.randperm(len(idxs))
        idxs = idxs[perm].tolist()
        return iter(idxs)

    def __len__(self):
        return sum(min(len(c), self.max_clips_per_video) for c in self.video_clips.clips)