faster_rcnn.py 22.3 KB
Newer Older
1
2
3
4
5
from torch import nn
import torch.nn.functional as F

from torchvision.ops import MultiScaleRoIAlign

6
from ._utils import overwrite_eps
7
8
from ..utils import load_state_dict_from_url

9
from .anchor_utils import AnchorGenerator
10
from .generalized_rcnn import GeneralizedRCNN
11
from .rpn import RPNHead, RegionProposalNetwork
12
13
from .roi_heads import RoIHeads
from .transform import GeneralizedRCNNTransform
14
from .backbone_utils import resnet_fpn_backbone, _validate_trainable_layers, mobilenet_backbone
15
16
17


__all__ = [
18
19
    "FasterRCNN", "fasterrcnn_resnet50_fpn", "fasterrcnn_mobilenet_v3_large_320_fpn",
    "fasterrcnn_mobilenet_v3_large_fpn"
20
21
22
23
]


class FasterRCNN(GeneralizedRCNN):
24
25
26
27
28
29
30
31
    """
    Implements Faster R-CNN.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

32
    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
33
    containing:
34
35
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
36
        - labels (Int64Tensor[N]): the class label for each ground-truth box
37

38
39
40
41
42
43
    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows:
44
45
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
46
        - labels (Int64Tensor[N]): the predicted labels for each image
47
        - scores (Tensor[N]): the scores or each prediction
48

49
    Args:
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain a out_channels attribute, which indicates the number of output
            channels that each feature map has (and it should be the same for all feature maps).
            The backbone should return a single Tensor or and OrderedDict[Tensor].
        num_classes (int): number of output classes of the model (including the background).
            If box_predictor is specified, num_classes should be None.
        min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
        max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN
        rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training
        rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing
        rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training
        rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing
        rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals
        rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training of the RPN.
        rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training of the RPN.
        rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN
            for computing the loss
        rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training
            of the RPN
79
80
        rpn_score_thresh (float): during inference, only return proposals with a classification score
            greater than rpn_score_thresh
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in
            the locations indicated by the bounding boxes
        box_head (nn.Module): module that takes the cropped feature maps as input
        box_predictor (nn.Module): module that takes the output of box_head and returns the
            classification logits and box regression deltas.
        box_score_thresh (float): during inference, only return proposals with a classification score
            greater than box_score_thresh
        box_nms_thresh (float): NMS threshold for the prediction head. Used during inference
        box_detections_per_img (int): maximum number of detections per image, for all classes.
        box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be
            considered as positive during training of the classification head
        box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be
            considered as negative during training of the classification head
        box_batch_size_per_image (int): number of proposals that are sampled during training of the
            classification head
        box_positive_fraction (float): proportion of positive proposals in a mini-batch during training
            of the classification head
        bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the
            bounding boxes

    Example::

Gu-ni-kim's avatar
Gu-ni-kim committed
103
        >>> import torch
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        >>> import torchvision
        >>> from torchvision.models.detection import FasterRCNN
        >>> from torchvision.models.detection.rpn import AnchorGenerator
        >>> # load a pre-trained model for classification and return
        >>> # only the features
        >>> backbone = torchvision.models.mobilenet_v2(pretrained=True).features
        >>> # FasterRCNN needs to know the number of
        >>> # output channels in a backbone. For mobilenet_v2, it's 1280
        >>> # so we need to add it here
        >>> backbone.out_channels = 1280
        >>>
        >>> # let's make the RPN generate 5 x 3 anchors per spatial
        >>> # location, with 5 different sizes and 3 different aspect
        >>> # ratios. We have a Tuple[Tuple[int]] because each feature
        >>> # map could potentially have different sizes and
        >>> # aspect ratios
        >>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
        >>>                                    aspect_ratios=((0.5, 1.0, 2.0),))
        >>>
        >>> # let's define what are the feature maps that we will
        >>> # use to perform the region of interest cropping, as well as
        >>> # the size of the crop after rescaling.
        >>> # if your backbone returns a Tensor, featmap_names is expected to
127
        >>> # be ['0']. More generally, the backbone should return an
128
129
        >>> # OrderedDict[Tensor], and in featmap_names you can choose which
        >>> # feature maps to use.
130
        >>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
131
132
133
134
135
136
137
138
        >>>                                                 output_size=7,
        >>>                                                 sampling_ratio=2)
        >>>
        >>> # put the pieces together inside a FasterRCNN model
        >>> model = FasterRCNN(backbone,
        >>>                    num_classes=2,
        >>>                    rpn_anchor_generator=anchor_generator,
        >>>                    box_roi_pool=roi_pooler)
139
140
141
142
143
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
    """

144
145
146
147
148
149
150
151
152
153
154
    def __init__(self, backbone, num_classes=None,
                 # transform parameters
                 min_size=800, max_size=1333,
                 image_mean=None, image_std=None,
                 # RPN parameters
                 rpn_anchor_generator=None, rpn_head=None,
                 rpn_pre_nms_top_n_train=2000, rpn_pre_nms_top_n_test=1000,
                 rpn_post_nms_top_n_train=2000, rpn_post_nms_top_n_test=1000,
                 rpn_nms_thresh=0.7,
                 rpn_fg_iou_thresh=0.7, rpn_bg_iou_thresh=0.3,
                 rpn_batch_size_per_image=256, rpn_positive_fraction=0.5,
155
                 rpn_score_thresh=0.0,
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
                 # Box parameters
                 box_roi_pool=None, box_head=None, box_predictor=None,
                 box_score_thresh=0.05, box_nms_thresh=0.5, box_detections_per_img=100,
                 box_fg_iou_thresh=0.5, box_bg_iou_thresh=0.5,
                 box_batch_size_per_image=512, box_positive_fraction=0.25,
                 bbox_reg_weights=None):

        if not hasattr(backbone, "out_channels"):
            raise ValueError(
                "backbone should contain an attribute out_channels "
                "specifying the number of output channels (assumed to be the "
                "same for all the levels)")

        assert isinstance(rpn_anchor_generator, (AnchorGenerator, type(None)))
        assert isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None)))

        if num_classes is not None:
            if box_predictor is not None:
                raise ValueError("num_classes should be None when box_predictor is specified")
        else:
            if box_predictor is None:
                raise ValueError("num_classes should not be None when box_predictor "
                                 "is not specified")

        out_channels = backbone.out_channels

        if rpn_anchor_generator is None:
            anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
            aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
            rpn_anchor_generator = AnchorGenerator(
                anchor_sizes, aspect_ratios
            )
        if rpn_head is None:
            rpn_head = RPNHead(
                out_channels, rpn_anchor_generator.num_anchors_per_location()[0]
            )

        rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
        rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)

        rpn = RegionProposalNetwork(
            rpn_anchor_generator, rpn_head,
            rpn_fg_iou_thresh, rpn_bg_iou_thresh,
            rpn_batch_size_per_image, rpn_positive_fraction,
200
201
            rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh,
            score_thresh=rpn_score_thresh)
202
203
204

        if box_roi_pool is None:
            box_roi_pool = MultiScaleRoIAlign(
eellison's avatar
eellison committed
205
                featmap_names=['0', '1', '2', '3'],
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
                output_size=7,
                sampling_ratio=2)

        if box_head is None:
            resolution = box_roi_pool.output_size[0]
            representation_size = 1024
            box_head = TwoMLPHead(
                out_channels * resolution ** 2,
                representation_size)

        if box_predictor is None:
            representation_size = 1024
            box_predictor = FastRCNNPredictor(
                representation_size,
                num_classes)

        roi_heads = RoIHeads(
            # Box
            box_roi_pool, box_head, box_predictor,
            box_fg_iou_thresh, box_bg_iou_thresh,
            box_batch_size_per_image, box_positive_fraction,
            bbox_reg_weights,
            box_score_thresh, box_nms_thresh, box_detections_per_img)

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)

        super(FasterRCNN, self).__init__(backbone, rpn, roi_heads, transform)


class TwoMLPHead(nn.Module):
    """
241
242
    Standard heads for FPN-based models

243
    Args:
244
245
        in_channels (int): number of input channels
        representation_size (int): size of the intermediate representation
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    """

    def __init__(self, in_channels, representation_size):
        super(TwoMLPHead, self).__init__()

        self.fc6 = nn.Linear(in_channels, representation_size)
        self.fc7 = nn.Linear(representation_size, representation_size)

    def forward(self, x):
        x = x.flatten(start_dim=1)

        x = F.relu(self.fc6(x))
        x = F.relu(self.fc7(x))

        return x


class FastRCNNPredictor(nn.Module):
264
265
266
267
    """
    Standard classification + bounding box regression layers
    for Fast R-CNN.

268
    Args:
269
270
271
272
        in_channels (int): number of input channels
        num_classes (int): number of output classes (including background)
    """

273
274
275
276
277
278
    def __init__(self, in_channels, num_classes):
        super(FastRCNNPredictor, self).__init__()
        self.cls_score = nn.Linear(in_channels, num_classes)
        self.bbox_pred = nn.Linear(in_channels, num_classes * 4)

    def forward(self, x):
eellison's avatar
eellison committed
279
        if x.dim() == 4:
280
281
282
283
284
285
286
287
            assert list(x.shape[2:]) == [1, 1]
        x = x.flatten(start_dim=1)
        scores = self.cls_score(x)
        bbox_deltas = self.bbox_pred(x)

        return scores, bbox_deltas


288
289
290
model_urls = {
    'fasterrcnn_resnet50_fpn_coco':
        'https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth',
291
292
    'fasterrcnn_mobilenet_v3_large_320_fpn_coco':
        'https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_320_fpn-907ea3f9.pth',
293
    'fasterrcnn_mobilenet_v3_large_fpn_coco':
294
        'https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_fpn-fb6a3cc7.pth'
295
296
297
298
}


def fasterrcnn_resnet50_fpn(pretrained=False, progress=True,
299
                            num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs):
300
301
302
    """
    Constructs a Faster R-CNN model with a ResNet-50-FPN backbone.

303
304
305
306
307
    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

308
    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
309
    containing:
310

311
312
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
313
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box
314
315
316
317
318
319

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
320
    follows, where ``N`` is the number of detections:
321

322
323
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
324
325
326
327
        - labels (``Int64Tensor[N]``): the predicted labels for each detection
        - scores (``Tensor[N]``): the scores of each detection

    For more details on the output, you may refer to :ref:`instance_seg_output`.
328

329
330
    Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.

331
332
333
    Example::

        >>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
334
335
336
        >>> # For training
        >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4)
        >>> labels = torch.randint(1, 91, (4, 11))
337
        >>> images = list(image for image in images)
338
        >>> targets = []
339
340
341
        >>> for i in range(len(images)):
        >>>     d = {}
        >>>     d['boxes'] = boxes[i]
342
        >>>     d['labels'] = labels[i]
343
        >>>     targets.append(d)
344
345
346
        >>> output = model(images, targets)
        >>> # For inference
        >>> model.eval()
347
348
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
349
350
351
        >>>
        >>> # optionally, if you want to export the model to ONNX:
        >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)
352

353
    Args:
354
355
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
356
        num_classes (int): number of output classes of the model (including the background)
357
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
358
359
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
360
    """
361
362
    trainable_backbone_layers = _validate_trainable_layers(
        pretrained or pretrained_backbone, trainable_backbone_layers, 5, 3)
363

364
365
366
    if pretrained:
        # no need to download the backbone if pretrained is set
        pretrained_backbone = False
367
    backbone = resnet_fpn_backbone('resnet50', pretrained_backbone, trainable_layers=trainable_backbone_layers)
368
369
    model = FasterRCNN(backbone, num_classes, **kwargs)
    if pretrained:
370
371
372
        state_dict = load_state_dict_from_url(model_urls['fasterrcnn_resnet50_fpn_coco'],
                                              progress=progress)
        model.load_state_dict(state_dict)
373
        overwrite_eps(model, 0.0)
374
    return model
375
376


377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
def _fasterrcnn_mobilenet_v3_large_fpn(weights_name, pretrained=False, progress=True, num_classes=91,
                                       pretrained_backbone=True, trainable_backbone_layers=None, **kwargs):
    trainable_backbone_layers = _validate_trainable_layers(
        pretrained or pretrained_backbone, trainable_backbone_layers, 6, 3)

    if pretrained:
        pretrained_backbone = False
    backbone = mobilenet_backbone("mobilenet_v3_large", pretrained_backbone, True,
                                  trainable_layers=trainable_backbone_layers)

    anchor_sizes = ((32, 64, 128, 256, 512, ), ) * 3
    aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)

    model = FasterRCNN(backbone, num_classes, rpn_anchor_generator=AnchorGenerator(anchor_sizes, aspect_ratios),
                       **kwargs)
    if pretrained:
        if model_urls.get(weights_name, None) is None:
            raise ValueError("No checkpoint is available for model {}".format(weights_name))
        state_dict = load_state_dict_from_url(model_urls[weights_name], progress=progress)
        model.load_state_dict(state_dict)
    return model


def fasterrcnn_mobilenet_v3_large_320_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True,
                                          trainable_backbone_layers=None, **kwargs):
402
    """
403
    Constructs a low resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone tunned for mobile use-cases.
404
405
406
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
407
408
409

    Example::

410
        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(pretrained=True)
411
412
413
414
415
416
417
418
419
420
421
422
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
        num_classes (int): number of output classes of the model (including the background)
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable.
    """
423
424
425
426
427
428
429
430
    weights_name = "fasterrcnn_mobilenet_v3_large_320_fpn_coco"
    defaults = {
        "min_size": 320,
        "max_size": 640,
        "rpn_pre_nms_top_n_test": 150,
        "rpn_post_nms_top_n_test": 150,
        "rpn_score_thresh": 0.05,
    }
431

432
433
434
435
    kwargs = {**defaults, **kwargs}
    return _fasterrcnn_mobilenet_v3_large_fpn(weights_name, pretrained=pretrained, progress=progress,
                                              num_classes=num_classes, pretrained_backbone=pretrained_backbone,
                                              trainable_backbone_layers=trainable_backbone_layers, **kwargs)
436
437


438
439
440
441
def fasterrcnn_mobilenet_v3_large_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True,
                                      trainable_backbone_layers=None, **kwargs):
    """
    Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone.
442
443
444
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

    Example::

        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=True)
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
        num_classes (int): number of output classes of the model (including the background)
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable.
    """
    weights_name = "fasterrcnn_mobilenet_v3_large_fpn_coco"
    defaults = {
        "rpn_score_thresh": 0.05,
    }

    kwargs = {**defaults, **kwargs}
    return _fasterrcnn_mobilenet_v3_large_fpn(weights_name, pretrained=pretrained, progress=progress,
                                              num_classes=num_classes, pretrained_backbone=pretrained_backbone,
                                              trainable_backbone_layers=trainable_backbone_layers, **kwargs)