video_utils.py 12.3 KB
Newer Older
1
import bisect
2
from fractions import Fraction
3
4
import math
import torch
5
6
7
from torchvision.io import (
    _read_video_timestamps_from_file,
    _read_video_from_file,
8
    _probe_video_from_file
9
)
10
11
from torchvision.io import read_video_timestamps, read_video

12
13
from .utils import tqdm

14

15
16
17
18
19
20
21
22
23
24
25
26
def pts_convert(pts, timebase_from, timebase_to, round_func=math.floor):
    """convert pts between different time bases
    Args:
        pts: presentation timestamp, float
        timebase_from: original timebase. Fraction
        timebase_to: new timebase. Fraction
        round_func: rounding function.
    """
    new_pts = Fraction(pts, 1) * timebase_from / timebase_to
    return round_func(new_pts)


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def unfold(tensor, size, step, dilation=1):
    """
    similar to tensor.unfold, but with the dilation
    and specialized for 1d tensors

    Returns all consecutive windows of `size` elements, with
    `step` between windows. The distance between each element
    in a window is given by `dilation`.
    """
    assert tensor.dim() == 1
    o_stride = tensor.stride(0)
    numel = tensor.numel()
    new_stride = (step * o_stride, dilation * o_stride)
    new_size = ((numel - (dilation * (size - 1) + 1)) // step + 1, size)
    if new_size[0] < 1:
        new_size = (0, size)
    return torch.as_strided(tensor, new_size, new_stride)


46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
class _DummyDataset(object):
    """
    Dummy dataset used for DataLoader in VideoClips.
    Defined at top level so it can be pickled when forking.
    """
    def __init__(self, x):
        self.x = x

    def __len__(self):
        return len(self.x)

    def __getitem__(self, idx):
        return read_video_timestamps(self.x[idx])


61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
class VideoClips(object):
    """
    Given a list of video files, computes all consecutive subvideos of size
    `clip_length_in_frames`, where the distance between each subvideo in the
    same video is defined by `frames_between_clips`.
    If `frame_rate` is specified, it will also resample all the videos to have
    the same frame rate, and the clips will refer to this frame rate.

    Creating this instance the first time is time-consuming, as it needs to
    decode all the videos in `video_paths`. It is recommended that you
    cache the results after instantiation of the class.

    Recreating the clips for different clip lengths is fast, and can be done
    with the `compute_clips` method.

    Arguments:
        video_paths (List[str]): paths to the video files
        clip_length_in_frames (int): size of a clip in number of frames
        frames_between_clips (int): step (in frames) between each clip
        frame_rate (int, optional): if specified, it will resample the video
            so that it has `frame_rate`, and then the clips will be defined
            on the resampled video
ekosman's avatar
ekosman committed
83
84
        num_workers (int): how many subprocesses to use for data loading.
            0 means that the data will be loaded in the main process. (default: 0)
85
86
    """
    def __init__(self, video_paths, clip_length_in_frames=16, frames_between_clips=1,
87
88
                 frame_rate=None, _precomputed_metadata=None, num_workers=0,
                 _video_width=0, _video_height=0, _video_min_dimension=0,
89
                 _audio_samples=0, _audio_channels=0):
90

91
        self.video_paths = video_paths
92
        self.num_workers = num_workers
93
94

        # these options are not valid for pyav backend
95
96
97
98
        self._video_width = _video_width
        self._video_height = _video_height
        self._video_min_dimension = _video_min_dimension
        self._audio_samples = _audio_samples
99
        self._audio_channels = _audio_channels
ekosman's avatar
ekosman committed
100

101
102
103
104
        if _precomputed_metadata is None:
            self._compute_frame_pts()
        else:
            self._init_from_metadata(_precomputed_metadata)
105
106
107
108
        self.compute_clips(clip_length_in_frames, frames_between_clips, frame_rate)

    def _compute_frame_pts(self):
        self.video_pts = []
109
        self.video_fps = []
110
111
112
113
114

        # strategy: use a DataLoader to parallelize read_video_timestamps
        # so need to create a dummy dataset first
        import torch.utils.data
        dl = torch.utils.data.DataLoader(
115
            _DummyDataset(self.video_paths),
116
            batch_size=16,
117
            num_workers=self.num_workers,
118
119
120
121
122
            collate_fn=lambda x: x)

        with tqdm(total=len(dl)) as pbar:
            for batch in dl:
                pbar.update(1)
123
124
125
126
                clips, fps = list(zip(*batch))
                clips = [torch.as_tensor(c) for c in clips]
                self.video_pts.extend(clips)
                self.video_fps.extend(fps)
127

128
    def _init_from_metadata(self, metadata):
129
        self.video_paths = metadata["video_paths"]
130
131
        assert len(self.video_paths) == len(metadata["video_pts"])
        self.video_pts = metadata["video_pts"]
132
133
        assert len(self.video_paths) == len(metadata["video_fps"])
        self.video_fps = metadata["video_fps"]
134
135
136
137
138
139

    @property
    def metadata(self):
        _metadata = {
            "video_paths": self.video_paths,
            "video_pts": self.video_pts,
140
            "video_fps": self.video_fps
141
        }
142
        return _metadata
143
144
145
146

    def subset(self, indices):
        video_paths = [self.video_paths[i] for i in indices]
        video_pts = [self.video_pts[i] for i in indices]
147
        video_fps = [self.video_fps[i] for i in indices]
148
        metadata = {
149
            "video_paths": video_paths,
150
            "video_pts": video_pts,
151
            "video_fps": video_fps
152
153
        }
        return type(self)(video_paths, self.num_frames, self.step, self.frame_rate,
154
155
156
157
                          _precomputed_metadata=metadata, num_workers=self.num_workers,
                          _video_width=self._video_width,
                          _video_height=self._video_height,
                          _video_min_dimension=self._video_min_dimension,
158
159
                          _audio_samples=self._audio_samples,
                          _audio_channels=self._audio_channels)
160

161
162
    @staticmethod
    def compute_clips_for_video(video_pts, num_frames, step, fps, frame_rate):
163
164
165
166
        if fps is None:
            # if for some reason the video doesn't have fps (because doesn't have a video stream)
            # set the fps to 1. The value doesn't matter, because video_pts is empty anyway
            fps = 1
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        if frame_rate is None:
            frame_rate = fps
        total_frames = len(video_pts) * (float(frame_rate) / fps)
        idxs = VideoClips._resample_video_idx(int(math.floor(total_frames)), fps, frame_rate)
        video_pts = video_pts[idxs]
        clips = unfold(video_pts, num_frames, step)
        if isinstance(idxs, slice):
            idxs = [idxs] * len(clips)
        else:
            idxs = unfold(idxs, num_frames, step)
        return clips, idxs

    def compute_clips(self, num_frames, step, frame_rate=None):
        """
        Compute all consecutive sequences of clips from video_pts.
        Always returns clips of size `num_frames`, meaning that the
        last few frames in a video can potentially be dropped.

        Arguments:
            num_frames (int): number of frames for the clip
            step (int): distance between two clips
        """
        self.num_frames = num_frames
        self.step = step
        self.frame_rate = frame_rate
        self.clips = []
        self.resampling_idxs = []
194
195
196
197
        for video_pts, fps in zip(self.video_pts, self.video_fps):
            clips, idxs = self.compute_clips_for_video(video_pts, num_frames, step, fps, frame_rate)
            self.clips.append(clips)
            self.resampling_idxs.append(idxs)
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        clip_lengths = torch.as_tensor([len(v) for v in self.clips])
        self.cumulative_sizes = clip_lengths.cumsum(0).tolist()

    def __len__(self):
        return self.num_clips()

    def num_videos(self):
        return len(self.video_paths)

    def num_clips(self):
        """
        Number of subclips that are available in the video list.
        """
        return self.cumulative_sizes[-1]

    def get_clip_location(self, idx):
        """
        Converts a flattened representation of the indices into a video_idx, clip_idx
        representation.
        """
        video_idx = bisect.bisect_right(self.cumulative_sizes, idx)
        if video_idx == 0:
            clip_idx = idx
        else:
            clip_idx = idx - self.cumulative_sizes[video_idx - 1]
        return video_idx, clip_idx

    @staticmethod
    def _resample_video_idx(num_frames, original_fps, new_fps):
        step = float(original_fps) / new_fps
        if step.is_integer():
            # optimization: if step is integer, don't need to perform
            # advanced indexing
            step = int(step)
            return slice(None, None, step)
        idxs = torch.arange(num_frames, dtype=torch.float32) * step
        idxs = idxs.floor().to(torch.int64)
        return idxs

    def get_clip(self, idx):
        """
        Gets a subclip from a list of videos.

        Arguments:
            idx (int): index of the subclip. Must be between 0 and num_clips().

        Returns:
            video (Tensor)
            audio (Tensor)
            info (Dict)
            video_idx (int): index of the video in `video_paths`
        """
        if idx >= self.num_clips():
            raise IndexError("Index {} out of range "
                             "({} number of clips)".format(idx, self.num_clips()))
        video_idx, clip_idx = self.get_clip_location(idx)
        video_path = self.video_paths[video_idx]
        clip_pts = self.clips[video_idx][clip_idx]
256

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        from torchvision import get_video_backend
        backend = get_video_backend()

        if backend == "pyav":
            # check for invalid options
            if self._video_width != 0:
                raise ValueError("pyav backend doesn't support _video_width != 0")
            if self._video_height != 0:
                raise ValueError("pyav backend doesn't support _video_height != 0")
            if self._video_min_dimension != 0:
                raise ValueError("pyav backend doesn't support _video_min_dimension != 0")
            if self._audio_samples != 0:
                raise ValueError("pyav backend doesn't support _audio_samples != 0")

        if backend == "pyav":
272
273
274
275
            start_pts = clip_pts[0].item()
            end_pts = clip_pts[-1].item()
            video, audio, info = read_video(video_path, start_pts, end_pts)
        else:
276
277
278
            info = _probe_video_from_file(video_path)
            video_fps = info["video_fps"]
            audio_fps = None
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

            video_start_pts = clip_pts[0].item()
            video_end_pts = clip_pts[-1].item()

            audio_start_pts, audio_end_pts = 0, -1
            audio_timebase = Fraction(0, 1)
            if "audio_timebase" in info:
                audio_timebase = info["audio_timebase"]
                audio_start_pts = pts_convert(
                    video_start_pts,
                    info["video_timebase"],
                    info["audio_timebase"],
                    math.floor,
                )
                audio_end_pts = pts_convert(
294
                    video_end_pts,
295
296
297
298
                    info["video_timebase"],
                    info["audio_timebase"],
                    math.ceil,
                )
299
                audio_fps = info["audio_sample_rate"]
300
301
            video, audio, info = _read_video_from_file(
                video_path,
302
303
304
                video_width=self._video_width,
                video_height=self._video_height,
                video_min_dimension=self._video_min_dimension,
305
306
                video_pts_range=(video_start_pts, video_end_pts),
                video_timebase=info["video_timebase"],
307
                audio_samples=self._audio_samples,
308
                audio_channels=self._audio_channels,
309
310
311
                audio_pts_range=(audio_start_pts, audio_end_pts),
                audio_timebase=audio_timebase,
            )
312
313
314
315
316

            info = {"video_fps": video_fps}
            if audio_fps is not None:
                info["audio_fps"] = audio_fps

317
318
319
320
321
322
        if self.frame_rate is not None:
            resampling_idx = self.resampling_idxs[video_idx][clip_idx]
            if isinstance(resampling_idx, torch.Tensor):
                resampling_idx = resampling_idx - resampling_idx[0]
            video = video[resampling_idx]
            info["video_fps"] = self.frame_rate
323
        assert len(video) == self.num_frames, "{} x {}".format(video.shape, self.num_frames)
324
        return video, audio, info, video_idx