mnist.py 20.9 KB
Newer Older
1
from .vision import VisionDataset
2
import warnings
Tian Qi Chen's avatar
Tian Qi Chen committed
3
4
5
from PIL import Image
import os
import os.path
6
import numpy as np
Tian Qi Chen's avatar
Tian Qi Chen committed
7
8
import torch
import codecs
9
import string
10
11
import gzip
import lzma
12
from typing import Any, Callable, Dict, IO, List, Optional, Tuple, Union
13
from urllib.error import URLError
14
from .utils import download_url, download_and_extract_archive, extract_archive, \
15
    verify_str_arg
Tian Qi Chen's avatar
Tian Qi Chen committed
16

17

18
class MNIST(VisionDataset):
19
20
21
    """`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset.

    Args:
22
23
        root (string): Root directory of dataset where ``MNIST/processed/training.pt``
            and  ``MNIST/processed/test.pt`` exist.
24
25
26
27
28
29
30
31
32
33
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
34

35
36
37
38
39
    mirrors = [
        'http://yann.lecun.com/exdb/mnist/',
        'https://ossci-datasets.s3.amazonaws.com/mnist/',
    ]

40
    resources = [
41
42
43
44
        ("train-images-idx3-ubyte.gz", "f68b3c2dcbeaaa9fbdd348bbdeb94873"),
        ("train-labels-idx1-ubyte.gz", "d53e105ee54ea40749a09fcbcd1e9432"),
        ("t10k-images-idx3-ubyte.gz", "9fb629c4189551a2d022fa330f9573f3"),
        ("t10k-labels-idx1-ubyte.gz", "ec29112dd5afa0611ce80d1b7f02629c")
Tian Qi Chen's avatar
Tian Qi Chen committed
45
    ]
46

47
48
    training_file = 'training.pt'
    test_file = 'test.pt'
49
50
51
    classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
               '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    @property
    def train_labels(self):
        warnings.warn("train_labels has been renamed targets")
        return self.targets

    @property
    def test_labels(self):
        warnings.warn("test_labels has been renamed targets")
        return self.targets

    @property
    def train_data(self):
        warnings.warn("train_data has been renamed data")
        return self.data

    @property
    def test_data(self):
        warnings.warn("test_data has been renamed data")
        return self.data

72
73
74
75
76
77
78
79
    def __init__(
            self,
            root: str,
            train: bool = True,
            transform: Optional[Callable] = None,
            target_transform: Optional[Callable] = None,
            download: bool = False,
    ) -> None:
80
81
        super(MNIST, self).__init__(root, transform=transform,
                                    target_transform=target_transform)
82
        self.train = train  # training set or test set
Tian Qi Chen's avatar
Tian Qi Chen committed
83
84
85
86
87

        if download:
            self.download()

        if not self._check_exists():
88
89
            raise RuntimeError('Dataset not found.' +
                               ' You can use download=True to download it')
Tian Qi Chen's avatar
Tian Qi Chen committed
90
91

        if self.train:
92
            data_file = self.training_file
Tian Qi Chen's avatar
Tian Qi Chen committed
93
        else:
94
95
            data_file = self.test_file
        self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file))
Tian Qi Chen's avatar
Tian Qi Chen committed
96

97
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
98
99
100
101
102
103
104
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
105
        img, target = self.data[index], int(self.targets[index])
Tian Qi Chen's avatar
Tian Qi Chen committed
106
107
108
109
110
111
112
113
114
115
116
117
118

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img.numpy(), mode='L')

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

119
    def __len__(self) -> int:
120
        return len(self.data)
Tian Qi Chen's avatar
Tian Qi Chen committed
121

122
    @property
123
    def raw_folder(self) -> str:
124
125
126
        return os.path.join(self.root, self.__class__.__name__, 'raw')

    @property
127
    def processed_folder(self) -> str:
128
129
130
        return os.path.join(self.root, self.__class__.__name__, 'processed')

    @property
131
    def class_to_idx(self) -> Dict[str, int]:
132
133
        return {_class: i for i, _class in enumerate(self.classes)}

134
    def _check_exists(self) -> bool:
135
136
137
138
        return (os.path.exists(os.path.join(self.processed_folder,
                                            self.training_file)) and
                os.path.exists(os.path.join(self.processed_folder,
                                            self.test_file)))
139

140
    def download(self) -> None:
141
        """Download the MNIST data if it doesn't exist in processed_folder already."""
Tian Qi Chen's avatar
Tian Qi Chen committed
142
143
144
145

        if self._check_exists():
            return

146
147
        os.makedirs(self.raw_folder, exist_ok=True)
        os.makedirs(self.processed_folder, exist_ok=True)
Tian Qi Chen's avatar
Tian Qi Chen committed
148

149
        # download files
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        for filename, md5 in self.resources:
            for mirror in self.mirrors:
                url = "{}{}".format(mirror, filename)
                try:
                    print("Downloading {}".format(url))
                    download_and_extract_archive(
                        url, download_root=self.raw_folder,
                        filename=filename,
                        md5=md5
                    )
                except URLError as error:
                    print(
                        "Failed to download (trying next):\n{}".format(error)
                    )
                    continue
                finally:
                    print()
                break
            else:
                raise RuntimeError("Error downloading {}".format(filename))
Tian Qi Chen's avatar
Tian Qi Chen committed
170
171

        # process and save as torch files
Adam Paszke's avatar
Adam Paszke committed
172
173
        print('Processing...')

Tian Qi Chen's avatar
Tian Qi Chen committed
174
        training_set = (
175
176
            read_image_file(os.path.join(self.raw_folder, 'train-images-idx3-ubyte')),
            read_label_file(os.path.join(self.raw_folder, 'train-labels-idx1-ubyte'))
Tian Qi Chen's avatar
Tian Qi Chen committed
177
178
        )
        test_set = (
179
180
            read_image_file(os.path.join(self.raw_folder, 't10k-images-idx3-ubyte')),
            read_label_file(os.path.join(self.raw_folder, 't10k-labels-idx1-ubyte'))
Tian Qi Chen's avatar
Tian Qi Chen committed
181
        )
182
        with open(os.path.join(self.processed_folder, self.training_file), 'wb') as f:
Tian Qi Chen's avatar
Tian Qi Chen committed
183
            torch.save(training_set, f)
184
        with open(os.path.join(self.processed_folder, self.test_file), 'wb') as f:
Tian Qi Chen's avatar
Tian Qi Chen committed
185
186
187
188
            torch.save(test_set, f)

        print('Done!')

189
    def extra_repr(self) -> str:
190
        return "Split: {}".format("Train" if self.train is True else "Test")
191

192

193
class FashionMNIST(MNIST):
194
195
196
    """`Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset.

    Args:
197
198
        root (string): Root directory of dataset where ``FashionMNIST/processed/training.pt``
            and  ``FashionMNIST/processed/test.pt`` exist.
199
200
201
202
203
204
205
206
207
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
208
    """
209
210
211
212
    mirrors = [
        "http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/"
    ]

213
    resources = [
214
215
216
217
        ("train-images-idx3-ubyte.gz", "8d4fb7e6c68d591d4c3dfef9ec88bf0d"),
        ("train-labels-idx1-ubyte.gz", "25c81989df183df01b3e8a0aad5dffbe"),
        ("t10k-images-idx3-ubyte.gz", "bef4ecab320f06d8554ea6380940ec79"),
        ("t10k-labels-idx1-ubyte.gz", "bb300cfdad3c16e7a12a480ee83cd310")
218
    ]
219
220
    classes = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal',
               'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
221
222


hysts's avatar
hysts committed
223
224
225
226
class KMNIST(MNIST):
    """`Kuzushiji-MNIST <https://github.com/rois-codh/kmnist>`_ Dataset.

    Args:
227
228
        root (string): Root directory of dataset where ``KMNIST/processed/training.pt``
            and  ``KMNIST/processed/test.pt`` exist.
hysts's avatar
hysts committed
229
230
231
232
233
234
235
236
237
238
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
239
240
241
242
    mirrors = [
        "http://codh.rois.ac.jp/kmnist/dataset/kmnist/"
    ]

243
    resources = [
244
245
246
247
        ("train-images-idx3-ubyte.gz", "bdb82020997e1d708af4cf47b453dcf7"),
        ("train-labels-idx1-ubyte.gz", "e144d726b3acfaa3e44228e80efcd344"),
        ("t10k-images-idx3-ubyte.gz", "5c965bf0a639b31b8f53240b1b52f4d7"),
        ("t10k-labels-idx1-ubyte.gz", "7320c461ea6c1c855c0b718fb2a4b134")
hysts's avatar
hysts committed
248
249
250
251
    ]
    classes = ['o', 'ki', 'su', 'tsu', 'na', 'ha', 'ma', 'ya', 're', 'wo']


252
class EMNIST(MNIST):
Alex Alemi's avatar
Alex Alemi committed
253
    """`EMNIST <https://www.westernsydney.edu.au/bens/home/reproducible_research/emnist>`_ Dataset.
254
255

    Args:
256
257
        root (string): Root directory of dataset where ``EMNIST/processed/training.pt``
            and  ``EMNIST/processed/test.pt`` exist.
258
259
260
261
262
263
264
265
266
267
268
269
270
        split (string): The dataset has 6 different splits: ``byclass``, ``bymerge``,
            ``balanced``, ``letters``, ``digits`` and ``mnist``. This argument specifies
            which one to use.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
Philip Meier's avatar
Philip Meier committed
271
    url = 'https://www.itl.nist.gov/iaui/vip/cs_links/EMNIST/gzip.zip'
272
    md5 = "58c8d27c78d21e728a6bc7b3cc06412e"
273
    splits = ('byclass', 'bymerge', 'balanced', 'letters', 'digits', 'mnist')
274
    # Merged Classes assumes Same structure for both uppercase and lowercase version
275
276
    _merged_classes = {'c', 'i', 'j', 'k', 'l', 'm', 'o', 'p', 's', 'u', 'v', 'w', 'x', 'y', 'z'}
    _all_classes = set(string.digits + string.ascii_letters)
277
    classes_split_dict = {
278
        'byclass': sorted(list(_all_classes)),
279
280
        'bymerge': sorted(list(_all_classes - _merged_classes)),
        'balanced': sorted(list(_all_classes - _merged_classes)),
281
        'letters': ['N/A'] + list(string.ascii_lowercase),
282
283
284
        'digits': list(string.digits),
        'mnist': list(string.digits),
    }
285

286
    def __init__(self, root: str, split: str, **kwargs: Any) -> None:
287
        self.split = verify_str_arg(split, "split", self.splits)
288
289
290
        self.training_file = self._training_file(split)
        self.test_file = self._test_file(split)
        super(EMNIST, self).__init__(root, **kwargs)
291
        self.classes = self.classes_split_dict[self.split]
Tian Qi Chen's avatar
Tian Qi Chen committed
292

293
    @staticmethod
294
    def _training_file(split) -> str:
295
296
        return 'training_{}.pt'.format(split)

297
    @staticmethod
298
    def _test_file(split) -> str:
299
300
        return 'test_{}.pt'.format(split)

301
    def download(self) -> None:
302
303
        """Download the EMNIST data if it doesn't exist in processed_folder already."""
        import shutil
304

305
306
307
        if self._check_exists():
            return

308
309
        os.makedirs(self.raw_folder, exist_ok=True)
        os.makedirs(self.processed_folder, exist_ok=True)
310

311
        # download files
312
        print('Downloading and extracting zip archive')
313
        download_and_extract_archive(self.url, download_root=self.raw_folder, filename="emnist.zip",
314
                                     remove_finished=True, md5=self.md5)
315
        gzip_folder = os.path.join(self.raw_folder, 'gzip')
316
317
        for gzip_file in os.listdir(gzip_folder):
            if gzip_file.endswith('.gz'):
318
                extract_archive(os.path.join(gzip_folder, gzip_file), gzip_folder)
319
320
321
322
323

        # process and save as torch files
        for split in self.splits:
            print('Processing ' + split)
            training_set = (
324
325
                read_image_file(os.path.join(gzip_folder, 'emnist-{}-train-images-idx3-ubyte'.format(split))),
                read_label_file(os.path.join(gzip_folder, 'emnist-{}-train-labels-idx1-ubyte'.format(split)))
326
327
            )
            test_set = (
328
329
                read_image_file(os.path.join(gzip_folder, 'emnist-{}-test-images-idx3-ubyte'.format(split))),
                read_label_file(os.path.join(gzip_folder, 'emnist-{}-test-labels-idx1-ubyte'.format(split)))
330
            )
331
            with open(os.path.join(self.processed_folder, self._training_file(split)), 'wb') as f:
332
                torch.save(training_set, f)
333
            with open(os.path.join(self.processed_folder, self._test_file(split)), 'wb') as f:
334
                torch.save(test_set, f)
335
        shutil.rmtree(gzip_folder)
336
337
338
339

        print('Done!')


340
341
342
343
class QMNIST(MNIST):
    """`QMNIST <https://github.com/facebookresearch/qmnist>`_ Dataset.

    Args:
344
        root (string): Root directory of dataset whose ``processed``
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
            subdir contains torch binary files with the datasets.
        what (string,optional): Can be 'train', 'test', 'test10k',
            'test50k', or 'nist' for respectively the mnist compatible
            training set, the 60k qmnist testing set, the 10k qmnist
            examples that match the mnist testing set, the 50k
            remaining qmnist testing examples, or all the nist
            digits. The default is to select 'train' or 'test'
            according to the compatibility argument 'train'.
        compat (bool,optional): A boolean that says whether the target
            for each example is class number (for compatibility with
            the MNIST dataloader) or a torch vector containing the
            full qmnist information. Default=True.
        download (bool, optional): If true, downloads the dataset from
            the internet and puts it in root directory. If dataset is
            already downloaded, it is not downloaded again.
        transform (callable, optional): A function/transform that
            takes in an PIL image and returns a transformed
            version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform
            that takes in the target and transforms it.
        train (bool,optional,compatibility): When argument 'what' is
            not specified, this boolean decides whether to load the
            training set ot the testing set.  Default: True.
    """

    subsets = {
        'train': 'train',
372
373
374
        'test': 'test',
        'test10k': 'test',
        'test50k': 'test',
375
376
        'nist': 'nist'
    }
377
    resources: Dict[str, List[Tuple[str, str]]] = {  # type: ignore[assignment]
378
379
380
381
382
383
384
385
386
387
388
389
        'train': [('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-images-idx3-ubyte.gz',
                   'ed72d4157d28c017586c42bc6afe6370'),
                  ('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-labels-idx2-int.gz',
                   '0058f8dd561b90ffdd0f734c6a30e5e4')],
        'test': [('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-images-idx3-ubyte.gz',
                  '1394631089c404de565df7b7aeaf9412'),
                 ('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-labels-idx2-int.gz',
                  '5b5b05890a5e13444e108efe57b788aa')],
        'nist': [('https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-images-idx3-ubyte.xz',
                  '7f124b3b8ab81486c9d8c2749c17f834'),
                 ('https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-labels-idx2-int.xz',
                  '5ed0e788978e45d4a8bd4b7caec3d79d')]
390
391
392
393
    }
    classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
               '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']

394
395
396
397
    def __init__(
            self, root: str, what: Optional[str] = None, compat: bool = True,
            train: bool = True, **kwargs: Any
    ) -> None:
398
399
        if what is None:
            what = 'train' if train else 'test'
400
        self.what = verify_str_arg(what, "what", tuple(self.subsets.keys()))
401
402
403
404
405
406
        self.compat = compat
        self.data_file = what + '.pt'
        self.training_file = self.data_file
        self.test_file = self.data_file
        super(QMNIST, self).__init__(root, train, **kwargs)

407
    def download(self) -> None:
408
409
410
411
412
        """Download the QMNIST data if it doesn't exist in processed_folder already.
           Note that we only download what has been asked for (argument 'what').
        """
        if self._check_exists():
            return
413
414
        os.makedirs(self.raw_folder, exist_ok=True)
        os.makedirs(self.processed_folder, exist_ok=True)
415
        split = self.resources[self.subsets[self.what]]
416
417
418
        files = []

        # download data files if not already there
419
        for url, md5 in split:
420
421
422
            filename = url.rpartition('/')[2]
            file_path = os.path.join(self.raw_folder, filename)
            if not os.path.isfile(file_path):
423
                download_url(url, root=self.raw_folder, filename=filename, md5=md5)
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
            files.append(file_path)

        # process and save as torch files
        print('Processing...')
        data = read_sn3_pascalvincent_tensor(files[0])
        assert(data.dtype == torch.uint8)
        assert(data.ndimension() == 3)
        targets = read_sn3_pascalvincent_tensor(files[1]).long()
        assert(targets.ndimension() == 2)
        if self.what == 'test10k':
            data = data[0:10000, :, :].clone()
            targets = targets[0:10000, :].clone()
        if self.what == 'test50k':
            data = data[10000:, :, :].clone()
            targets = targets[10000:, :].clone()
        with open(os.path.join(self.processed_folder, self.data_file), 'wb') as f:
            torch.save((data, targets), f)

442
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
443
444
445
446
447
448
449
450
451
452
453
        # redefined to handle the compat flag
        img, target = self.data[index], self.targets[index]
        img = Image.fromarray(img.numpy(), mode='L')
        if self.transform is not None:
            img = self.transform(img)
        if self.compat:
            target = int(target[0])
        if self.target_transform is not None:
            target = self.target_transform(target)
        return img, target

454
    def extra_repr(self) -> str:
455
456
457
        return "Split: {}".format(self.what)


458
def get_int(b: bytes) -> int:
459
    return int(codecs.encode(b, 'hex'), 16)
Tian Qi Chen's avatar
Tian Qi Chen committed
460

461

462
def open_maybe_compressed_file(path: Union[str, IO]) -> Union[IO, gzip.GzipFile]:
463
464
465
466
467
468
469
470
471
472
473
474
    """Return a file object that possibly decompresses 'path' on the fly.
       Decompression occurs when argument `path` is a string and ends with '.gz' or '.xz'.
    """
    if not isinstance(path, torch._six.string_classes):
        return path
    if path.endswith('.gz'):
        return gzip.open(path, 'rb')
    if path.endswith('.xz'):
        return lzma.open(path, 'rb')
    return open(path, 'rb')


475
476
477
478
479
480
481
482
483
484
485
SN3_PASCALVINCENT_TYPEMAP = {
    8: (torch.uint8, np.uint8, np.uint8),
    9: (torch.int8, np.int8, np.int8),
    11: (torch.int16, np.dtype('>i2'), 'i2'),
    12: (torch.int32, np.dtype('>i4'), 'i4'),
    13: (torch.float32, np.dtype('>f4'), 'f4'),
    14: (torch.float64, np.dtype('>f8'), 'f8')
}


def read_sn3_pascalvincent_tensor(path: Union[str, IO], strict: bool = True) -> torch.Tensor:
486
487
488
489
490
491
492
493
494
495
    """Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-io.lsh').
       Argument may be a filename, compressed filename, or file object.
    """
    # read
    with open_maybe_compressed_file(path) as f:
        data = f.read()
    # parse
    magic = get_int(data[0:4])
    nd = magic % 256
    ty = magic // 256
496
497
    assert 1 <= nd <= 3
    assert 8 <= ty <= 14
498
    m = SN3_PASCALVINCENT_TYPEMAP[ty]
499
500
501
502
503
504
    s = [get_int(data[4 * (i + 1): 4 * (i + 2)]) for i in range(nd)]
    parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1)))
    assert parsed.shape[0] == np.prod(s) or not strict
    return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)


505
def read_label_file(path: str) -> torch.Tensor:
Tian Qi Chen's avatar
Tian Qi Chen committed
506
    with open(path, 'rb') as f:
507
508
509
510
        x = read_sn3_pascalvincent_tensor(f, strict=False)
    assert(x.dtype == torch.uint8)
    assert(x.ndimension() == 1)
    return x.long()
Tian Qi Chen's avatar
Tian Qi Chen committed
511

512

513
def read_image_file(path: str) -> torch.Tensor:
Tian Qi Chen's avatar
Tian Qi Chen committed
514
    with open(path, 'rb') as f:
515
516
517
518
        x = read_sn3_pascalvincent_tensor(f, strict=False)
    assert(x.dtype == torch.uint8)
    assert(x.ndimension() == 3)
    return x