mnist.py 20.3 KB
Newer Older
Tian Qi Chen's avatar
Tian Qi Chen committed
1
from __future__ import print_function
2
from .vision import VisionDataset
3
import warnings
Tian Qi Chen's avatar
Tian Qi Chen committed
4
5
6
from PIL import Image
import os
import os.path
7
import numpy as np
Tian Qi Chen's avatar
Tian Qi Chen committed
8
9
import torch
import codecs
10
import string
11
12
from .utils import download_url, download_and_extract_archive, extract_archive, \
    makedir_exist_ok, verify_str_arg
Tian Qi Chen's avatar
Tian Qi Chen committed
13

14

15
class MNIST(VisionDataset):
16
17
18
    """`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset.

    Args:
19
20
        root (string): Root directory of dataset where ``MNIST/processed/training.pt``
            and  ``MNIST/processed/test.pt`` exist.
21
22
23
24
25
26
27
28
29
30
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
31
32
33
34
35
36

    resources = [
        ("http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz", "f68b3c2dcbeaaa9fbdd348bbdeb94873"),
        ("http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz", "d53e105ee54ea40749a09fcbcd1e9432"),
        ("http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz", "9fb629c4189551a2d022fa330f9573f3"),
        ("http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz", "ec29112dd5afa0611ce80d1b7f02629c")
Tian Qi Chen's avatar
Tian Qi Chen committed
37
    ]
38

39
40
    training_file = 'training.pt'
    test_file = 'test.pt'
41
42
43
    classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
               '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    @property
    def train_labels(self):
        warnings.warn("train_labels has been renamed targets")
        return self.targets

    @property
    def test_labels(self):
        warnings.warn("test_labels has been renamed targets")
        return self.targets

    @property
    def train_data(self):
        warnings.warn("train_data has been renamed data")
        return self.data

    @property
    def test_data(self):
        warnings.warn("test_data has been renamed data")
        return self.data

64
65
66
67
    def __init__(self, root, train=True, transform=None, target_transform=None,
                 download=False):
        super(MNIST, self).__init__(root, transform=transform,
                                    target_transform=target_transform)
68
        self.train = train  # training set or test set
Tian Qi Chen's avatar
Tian Qi Chen committed
69
70
71
72
73

        if download:
            self.download()

        if not self._check_exists():
74
75
            raise RuntimeError('Dataset not found.' +
                               ' You can use download=True to download it')
Tian Qi Chen's avatar
Tian Qi Chen committed
76
77

        if self.train:
78
            data_file = self.training_file
Tian Qi Chen's avatar
Tian Qi Chen committed
79
        else:
80
81
            data_file = self.test_file
        self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file))
Tian Qi Chen's avatar
Tian Qi Chen committed
82
83

    def __getitem__(self, index):
84
85
86
87
88
89
90
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
91
        img, target = self.data[index], int(self.targets[index])
Tian Qi Chen's avatar
Tian Qi Chen committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img.numpy(), mode='L')

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
106
        return len(self.data)
Tian Qi Chen's avatar
Tian Qi Chen committed
107

108
109
110
111
112
113
114
115
116
117
118
119
    @property
    def raw_folder(self):
        return os.path.join(self.root, self.__class__.__name__, 'raw')

    @property
    def processed_folder(self):
        return os.path.join(self.root, self.__class__.__name__, 'processed')

    @property
    def class_to_idx(self):
        return {_class: i for i, _class in enumerate(self.classes)}

Tian Qi Chen's avatar
Tian Qi Chen committed
120
    def _check_exists(self):
121
122
123
124
        return (os.path.exists(os.path.join(self.processed_folder,
                                            self.training_file)) and
                os.path.exists(os.path.join(self.processed_folder,
                                            self.test_file)))
125

Tian Qi Chen's avatar
Tian Qi Chen committed
126
    def download(self):
127
        """Download the MNIST data if it doesn't exist in processed_folder already."""
Tian Qi Chen's avatar
Tian Qi Chen committed
128
129
130
131

        if self._check_exists():
            return

132
133
        makedir_exist_ok(self.raw_folder)
        makedir_exist_ok(self.processed_folder)
Tian Qi Chen's avatar
Tian Qi Chen committed
134

135
        # download files
136
        for url, md5 in self.resources:
Tian Qi Chen's avatar
Tian Qi Chen committed
137
            filename = url.rpartition('/')[2]
138
            download_and_extract_archive(url, download_root=self.raw_folder, filename=filename, md5=md5)
Tian Qi Chen's avatar
Tian Qi Chen committed
139
140

        # process and save as torch files
Adam Paszke's avatar
Adam Paszke committed
141
142
        print('Processing...')

Tian Qi Chen's avatar
Tian Qi Chen committed
143
        training_set = (
144
145
            read_image_file(os.path.join(self.raw_folder, 'train-images-idx3-ubyte')),
            read_label_file(os.path.join(self.raw_folder, 'train-labels-idx1-ubyte'))
Tian Qi Chen's avatar
Tian Qi Chen committed
146
147
        )
        test_set = (
148
149
            read_image_file(os.path.join(self.raw_folder, 't10k-images-idx3-ubyte')),
            read_label_file(os.path.join(self.raw_folder, 't10k-labels-idx1-ubyte'))
Tian Qi Chen's avatar
Tian Qi Chen committed
150
        )
151
        with open(os.path.join(self.processed_folder, self.training_file), 'wb') as f:
Tian Qi Chen's avatar
Tian Qi Chen committed
152
            torch.save(training_set, f)
153
        with open(os.path.join(self.processed_folder, self.test_file), 'wb') as f:
Tian Qi Chen's avatar
Tian Qi Chen committed
154
155
156
157
            torch.save(test_set, f)

        print('Done!')

158
159
    def extra_repr(self):
        return "Split: {}".format("Train" if self.train is True else "Test")
160

161

162
class FashionMNIST(MNIST):
163
164
165
    """`Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset.

    Args:
166
167
        root (string): Root directory of dataset where ``Fashion-MNIST/processed/training.pt``
            and  ``Fashion-MNIST/processed/test.pt`` exist.
168
169
170
171
172
173
174
175
176
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
177
    """
178
179
180
181
182
183
184
185
186
    resources = [
        ("http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz",
         "8d4fb7e6c68d591d4c3dfef9ec88bf0d"),
        ("http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz",
         "25c81989df183df01b3e8a0aad5dffbe"),
        ("http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz",
         "bef4ecab320f06d8554ea6380940ec79"),
        ("http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz",
         "bb300cfdad3c16e7a12a480ee83cd310")
187
    ]
188
189
    classes = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal',
               'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
190
191


hysts's avatar
hysts committed
192
193
194
195
class KMNIST(MNIST):
    """`Kuzushiji-MNIST <https://github.com/rois-codh/kmnist>`_ Dataset.

    Args:
196
197
        root (string): Root directory of dataset where ``KMNIST/processed/training.pt``
            and  ``KMNIST/processed/test.pt`` exist.
hysts's avatar
hysts committed
198
199
200
201
202
203
204
205
206
207
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
208
209
210
211
212
    resources = [
        ("http://codh.rois.ac.jp/kmnist/dataset/kmnist/train-images-idx3-ubyte.gz", "bdb82020997e1d708af4cf47b453dcf7"),
        ("http://codh.rois.ac.jp/kmnist/dataset/kmnist/train-labels-idx1-ubyte.gz", "e144d726b3acfaa3e44228e80efcd344"),
        ("http://codh.rois.ac.jp/kmnist/dataset/kmnist/t10k-images-idx3-ubyte.gz", "5c965bf0a639b31b8f53240b1b52f4d7"),
        ("http://codh.rois.ac.jp/kmnist/dataset/kmnist/t10k-labels-idx1-ubyte.gz", "7320c461ea6c1c855c0b718fb2a4b134")
hysts's avatar
hysts committed
213
214
215
216
    ]
    classes = ['o', 'ki', 'su', 'tsu', 'na', 'ha', 'ma', 'ya', 're', 'wo']


217
class EMNIST(MNIST):
Alex Alemi's avatar
Alex Alemi committed
218
    """`EMNIST <https://www.westernsydney.edu.au/bens/home/reproducible_research/emnist>`_ Dataset.
219
220

    Args:
221
222
        root (string): Root directory of dataset where ``EMNIST/processed/training.pt``
            and  ``EMNIST/processed/test.pt`` exist.
223
224
225
226
227
228
229
230
231
232
233
234
235
        split (string): The dataset has 6 different splits: ``byclass``, ``bymerge``,
            ``balanced``, ``letters``, ``digits`` and ``mnist``. This argument specifies
            which one to use.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
Philip Meier's avatar
Philip Meier committed
236
237
238
239
240
    # Updated URL from https://www.nist.gov/node/1298471/emnist-dataset since the
    # _official_ download link
    # https://cloudstor.aarnet.edu.au/plus/s/ZNmuFiuQTqZlu9W/download
    # is (currently) unavailable
    url = 'http://www.itl.nist.gov/iaui/vip/cs_links/EMNIST/gzip.zip'
241
    md5 = "58c8d27c78d21e728a6bc7b3cc06412e"
242
    splits = ('byclass', 'bymerge', 'balanced', 'letters', 'digits', 'mnist')
243
244
245
246
247
248
249
250
251
252
253
    # Merged Classes assumes Same structure for both uppercase and lowercase version
    _merged_classes = set(['C', 'I', 'J', 'K', 'L', 'M', 'O', 'P', 'S', 'U', 'V', 'W', 'X', 'Y', 'Z'])
    _all_classes = set(list(string.digits + string.ascii_letters))
    classes_split_dict = {
        'byclass': list(_all_classes),
        'bymerge': sorted(list(_all_classes - _merged_classes)),
        'balanced': sorted(list(_all_classes - _merged_classes)),
        'letters': list(string.ascii_lowercase),
        'digits': list(string.digits),
        'mnist': list(string.digits),
    }
254
255

    def __init__(self, root, split, **kwargs):
256
        self.split = verify_str_arg(split, "split", self.splits)
257
258
259
        self.training_file = self._training_file(split)
        self.test_file = self._test_file(split)
        super(EMNIST, self).__init__(root, **kwargs)
260
        self.classes = self.classes_split_dict[self.split]
Tian Qi Chen's avatar
Tian Qi Chen committed
261

262
263
    @staticmethod
    def _training_file(split):
264
265
        return 'training_{}.pt'.format(split)

266
267
    @staticmethod
    def _test_file(split):
268
269
270
271
272
        return 'test_{}.pt'.format(split)

    def download(self):
        """Download the EMNIST data if it doesn't exist in processed_folder already."""
        import shutil
273

274
275
276
        if self._check_exists():
            return

277
278
        makedir_exist_ok(self.raw_folder)
        makedir_exist_ok(self.processed_folder)
279

280
        # download files
281
        print('Downloading and extracting zip archive')
282
        download_and_extract_archive(self.url, download_root=self.raw_folder, filename="emnist.zip",
283
                                     remove_finished=True, md5=self.md5)
284
        gzip_folder = os.path.join(self.raw_folder, 'gzip')
285
286
        for gzip_file in os.listdir(gzip_folder):
            if gzip_file.endswith('.gz'):
287
                extract_archive(os.path.join(gzip_folder, gzip_file), gzip_folder)
288
289
290
291
292

        # process and save as torch files
        for split in self.splits:
            print('Processing ' + split)
            training_set = (
293
294
                read_image_file(os.path.join(gzip_folder, 'emnist-{}-train-images-idx3-ubyte'.format(split))),
                read_label_file(os.path.join(gzip_folder, 'emnist-{}-train-labels-idx1-ubyte'.format(split)))
295
296
            )
            test_set = (
297
298
                read_image_file(os.path.join(gzip_folder, 'emnist-{}-test-images-idx3-ubyte'.format(split))),
                read_label_file(os.path.join(gzip_folder, 'emnist-{}-test-labels-idx1-ubyte'.format(split)))
299
            )
300
            with open(os.path.join(self.processed_folder, self._training_file(split)), 'wb') as f:
301
                torch.save(training_set, f)
302
            with open(os.path.join(self.processed_folder, self._test_file(split)), 'wb') as f:
303
                torch.save(test_set, f)
304
        shutil.rmtree(gzip_folder)
305
306
307
308

        print('Done!')


309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
class QMNIST(MNIST):
    """`QMNIST <https://github.com/facebookresearch/qmnist>`_ Dataset.

    Args:
        root (string): Root directory of dataset whose ``processed''
            subdir contains torch binary files with the datasets.
        what (string,optional): Can be 'train', 'test', 'test10k',
            'test50k', or 'nist' for respectively the mnist compatible
            training set, the 60k qmnist testing set, the 10k qmnist
            examples that match the mnist testing set, the 50k
            remaining qmnist testing examples, or all the nist
            digits. The default is to select 'train' or 'test'
            according to the compatibility argument 'train'.
        compat (bool,optional): A boolean that says whether the target
            for each example is class number (for compatibility with
            the MNIST dataloader) or a torch vector containing the
            full qmnist information. Default=True.
        download (bool, optional): If true, downloads the dataset from
            the internet and puts it in root directory. If dataset is
            already downloaded, it is not downloaded again.
        transform (callable, optional): A function/transform that
            takes in an PIL image and returns a transformed
            version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform
            that takes in the target and transforms it.
        train (bool,optional,compatibility): When argument 'what' is
            not specified, this boolean decides whether to load the
            training set ot the testing set.  Default: True.

    """

    subsets = {
        'train': 'train',
342
343
344
        'test': 'test',
        'test10k': 'test',
        'test50k': 'test',
345
346
        'nist': 'nist'
    }
347
348
349
350
351
352
353
354
355
356
357
358
359
    resources = {
        'train': [('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-images-idx3-ubyte.gz',
                   'ed72d4157d28c017586c42bc6afe6370'),
                  ('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-labels-idx2-int.gz',
                   '0058f8dd561b90ffdd0f734c6a30e5e4')],
        'test': [('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-images-idx3-ubyte.gz',
                  '1394631089c404de565df7b7aeaf9412'),
                 ('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-labels-idx2-int.gz',
                  '5b5b05890a5e13444e108efe57b788aa')],
        'nist': [('https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-images-idx3-ubyte.xz',
                  '7f124b3b8ab81486c9d8c2749c17f834'),
                 ('https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-labels-idx2-int.xz',
                  '5ed0e788978e45d4a8bd4b7caec3d79d')]
360
361
362
363
364
365
366
    }
    classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
               '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']

    def __init__(self, root, what=None, compat=True, train=True, **kwargs):
        if what is None:
            what = 'train' if train else 'test'
367
        self.what = verify_str_arg(what, "what", tuple(self.subsets.keys()))
368
369
370
371
372
373
374
375
376
377
378
379
380
381
        self.compat = compat
        self.data_file = what + '.pt'
        self.training_file = self.data_file
        self.test_file = self.data_file
        super(QMNIST, self).__init__(root, train, **kwargs)

    def download(self):
        """Download the QMNIST data if it doesn't exist in processed_folder already.
           Note that we only download what has been asked for (argument 'what').
        """
        if self._check_exists():
            return
        makedir_exist_ok(self.raw_folder)
        makedir_exist_ok(self.processed_folder)
382
        split = self.resources[self.subsets[self.what]]
383
384
385
        files = []

        # download data files if not already there
386
        for url, md5 in split:
387
388
389
            filename = url.rpartition('/')[2]
            file_path = os.path.join(self.raw_folder, filename)
            if not os.path.isfile(file_path):
390
                download_url(url, root=self.raw_folder, filename=filename, md5=md5)
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
            files.append(file_path)

        # process and save as torch files
        print('Processing...')
        data = read_sn3_pascalvincent_tensor(files[0])
        assert(data.dtype == torch.uint8)
        assert(data.ndimension() == 3)
        targets = read_sn3_pascalvincent_tensor(files[1]).long()
        assert(targets.ndimension() == 2)
        if self.what == 'test10k':
            data = data[0:10000, :, :].clone()
            targets = targets[0:10000, :].clone()
        if self.what == 'test50k':
            data = data[10000:, :, :].clone()
            targets = targets[10000:, :].clone()
        with open(os.path.join(self.processed_folder, self.data_file), 'wb') as f:
            torch.save((data, targets), f)

    def __getitem__(self, index):
        # redefined to handle the compat flag
        img, target = self.data[index], self.targets[index]
        img = Image.fromarray(img.numpy(), mode='L')
        if self.transform is not None:
            img = self.transform(img)
        if self.compat:
            target = int(target[0])
        if self.target_transform is not None:
            target = self.target_transform(target)
        return img, target

    def extra_repr(self):
        return "Split: {}".format(self.what)


425
426
def get_int(b):
    return int(codecs.encode(b, 'hex'), 16)
Tian Qi Chen's avatar
Tian Qi Chen committed
427

428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
def open_maybe_compressed_file(path):
    """Return a file object that possibly decompresses 'path' on the fly.
       Decompression occurs when argument `path` is a string and ends with '.gz' or '.xz'.
    """
    if not isinstance(path, torch._six.string_classes):
        return path
    if path.endswith('.gz'):
        import gzip
        return gzip.open(path, 'rb')
    if path.endswith('.xz'):
        import lzma
        return lzma.open(path, 'rb')
    return open(path, 'rb')


def read_sn3_pascalvincent_tensor(path, strict=True):
    """Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-io.lsh').
       Argument may be a filename, compressed filename, or file object.
    """
    # typemap
    if not hasattr(read_sn3_pascalvincent_tensor, 'typemap'):
        read_sn3_pascalvincent_tensor.typemap = {
            8: (torch.uint8, np.uint8, np.uint8),
            9: (torch.int8, np.int8, np.int8),
            11: (torch.int16, np.dtype('>i2'), 'i2'),
            12: (torch.int32, np.dtype('>i4'), 'i4'),
            13: (torch.float32, np.dtype('>f4'), 'f4'),
            14: (torch.float64, np.dtype('>f8'), 'f8')}
    # read
    with open_maybe_compressed_file(path) as f:
        data = f.read()
    # parse
    magic = get_int(data[0:4])
    nd = magic % 256
    ty = magic // 256
    assert nd >= 1 and nd <= 3
    assert ty >= 8 and ty <= 14
    m = read_sn3_pascalvincent_tensor.typemap[ty]
    s = [get_int(data[4 * (i + 1): 4 * (i + 2)]) for i in range(nd)]
    parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1)))
    assert parsed.shape[0] == np.prod(s) or not strict
    return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)


Tian Qi Chen's avatar
Tian Qi Chen committed
473
474
def read_label_file(path):
    with open(path, 'rb') as f:
475
476
477
478
        x = read_sn3_pascalvincent_tensor(f, strict=False)
    assert(x.dtype == torch.uint8)
    assert(x.ndimension() == 1)
    return x.long()
Tian Qi Chen's avatar
Tian Qi Chen committed
479

480

Tian Qi Chen's avatar
Tian Qi Chen committed
481
482
def read_image_file(path):
    with open(path, 'rb') as f:
483
484
485
486
        x = read_sn3_pascalvincent_tensor(f, strict=False)
    assert(x.dtype == torch.uint8)
    assert(x.ndimension() == 3)
    return x