_misc.py 10.2 KB
Newer Older
1
import math
2
from typing import List, Optional
3

4
import PIL.Image
5
import torch
6
from torch.nn.functional import conv2d, pad as torch_pad
7

8
from torchvision import datapoints
9
from torchvision.transforms._functional_tensor import _max_value
10
from torchvision.transforms.functional import pil_to_tensor, to_pil_image
11

12
13
from torchvision.utils import _log_api_usage_once

14
from ._utils import _get_kernel, _register_kernel_internal
15

16

17
def normalize(
18
    inpt: torch.Tensor,
19
20
21
22
    mean: List[float],
    std: List[float],
    inplace: bool = False,
) -> torch.Tensor:
23
    if torch.jit.is_scripting():
24
        return normalize_image(inpt, mean=mean, std=std, inplace=inplace)
25
26
27
28
29

    _log_api_usage_once(normalize)

    kernel = _get_kernel(normalize, type(inpt))
    return kernel(inpt, mean=mean, std=std, inplace=inplace)
30
31


32
@_register_kernel_internal(normalize, torch.Tensor)
33
@_register_kernel_internal(normalize, datapoints.Image)
34
def normalize_image(image: torch.Tensor, mean: List[float], std: List[float], inplace: bool = False) -> torch.Tensor:
35
36
37
38
    if not image.is_floating_point():
        raise TypeError(f"Input tensor should be a float tensor. Got {image.dtype}.")

    if image.ndim < 3:
39
        raise ValueError(f"Expected tensor to be a tensor image of size (..., C, H, W). Got {image.shape}.")
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

    if isinstance(std, (tuple, list)):
        divzero = not all(std)
    elif isinstance(std, (int, float)):
        divzero = std == 0
    else:
        divzero = False
    if divzero:
        raise ValueError("std evaluated to zero, leading to division by zero.")

    dtype = image.dtype
    device = image.device
    mean = torch.as_tensor(mean, dtype=dtype, device=device)
    std = torch.as_tensor(std, dtype=dtype, device=device)
    if mean.ndim == 1:
        mean = mean.view(-1, 1, 1)
    if std.ndim == 1:
        std = std.view(-1, 1, 1)

    if inplace:
        image = image.sub_(mean)
    else:
        image = image.sub(mean)

    return image.div_(std)
65

66

67
@_register_kernel_internal(normalize, datapoints.Video)
68
def normalize_video(video: torch.Tensor, mean: List[float], std: List[float], inplace: bool = False) -> torch.Tensor:
69
    return normalize_image(video, mean, std, inplace=inplace)
70
71


72
def gaussian_blur(inpt: torch.Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> torch.Tensor:
73
    if torch.jit.is_scripting():
74
        return gaussian_blur_image(inpt, kernel_size=kernel_size, sigma=sigma)
75
76
77
78
79

    _log_api_usage_once(gaussian_blur)

    kernel = _get_kernel(gaussian_blur, type(inpt))
    return kernel(inpt, kernel_size=kernel_size, sigma=sigma)
80
81


82
def _get_gaussian_kernel1d(kernel_size: int, sigma: float, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
83
    lim = (kernel_size - 1) / (2.0 * math.sqrt(2.0) * sigma)
84
    x = torch.linspace(-lim, lim, steps=kernel_size, dtype=dtype, device=device)
85
    kernel1d = torch.softmax(x.pow_(2).neg_(), dim=0)
86
87
88
89
90
91
    return kernel1d


def _get_gaussian_kernel2d(
    kernel_size: List[int], sigma: List[float], dtype: torch.dtype, device: torch.device
) -> torch.Tensor:
92
93
    kernel1d_x = _get_gaussian_kernel1d(kernel_size[0], sigma[0], dtype, device)
    kernel1d_y = _get_gaussian_kernel1d(kernel_size[1], sigma[1], dtype, device)
94
95
96
97
    kernel2d = kernel1d_y.unsqueeze(-1) * kernel1d_x
    return kernel2d


98
@_register_kernel_internal(gaussian_blur, torch.Tensor)
99
@_register_kernel_internal(gaussian_blur, datapoints.Image)
100
def gaussian_blur_image(
101
    image: torch.Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None
102
) -> torch.Tensor:
103
    # TODO: consider deprecating integers from sigma on the future
104
105
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
106
    elif len(kernel_size) != 2:
107
108
109
110
        raise ValueError(f"If kernel_size is a sequence its length should be 2. Got {len(kernel_size)}")
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
            raise ValueError(f"kernel_size should have odd and positive integers. Got {kernel_size}")
111

112
113
    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]
114
115
116
117
118
119
120
121
122
123
124
125
126
    else:
        if isinstance(sigma, (list, tuple)):
            length = len(sigma)
            if length == 1:
                s = float(sigma[0])
                sigma = [s, s]
            elif length != 2:
                raise ValueError(f"If sigma is a sequence, its length should be 2. Got {length}")
        elif isinstance(sigma, (int, float)):
            s = float(sigma)
            sigma = [s, s]
        else:
            raise TypeError(f"sigma should be either float or sequence of floats. Got {type(sigma)}")
127
128
129
    for s in sigma:
        if s <= 0.0:
            raise ValueError(f"sigma should have positive values. Got {sigma}")
130

131
132
133
    if image.numel() == 0:
        return image

134
    dtype = image.dtype
135
    shape = image.shape
136
137
138
139
    ndim = image.ndim
    if ndim == 3:
        image = image.unsqueeze(dim=0)
    elif ndim > 4:
140
        image = image.reshape((-1,) + shape[-3:])
141

142
143
144
    fp = torch.is_floating_point(image)
    kernel = _get_gaussian_kernel2d(kernel_size, sigma, dtype=dtype if fp else torch.float32, device=image.device)
    kernel = kernel.expand(shape[-3], 1, kernel.shape[0], kernel.shape[1])
145

146
    output = image if fp else image.to(dtype=torch.float32)
147
148
149

    # padding = (left, right, top, bottom)
    padding = [kernel_size[0] // 2, kernel_size[0] // 2, kernel_size[1] // 2, kernel_size[1] // 2]
150
151
    output = torch_pad(output, padding, mode="reflect")
    output = conv2d(output, kernel, groups=shape[-3])
152

153
154
155
    if ndim == 3:
        output = output.squeeze(dim=0)
    elif ndim > 4:
156
        output = output.reshape(shape)
157

158
159
160
    if not fp:
        output = output.round_().to(dtype=dtype)

161
    return output
162
163


164
@_register_kernel_internal(gaussian_blur, PIL.Image.Image)
165
def _gaussian_blur_image_pil(
166
    image: PIL.Image.Image, kernel_size: List[int], sigma: Optional[List[float]] = None
167
) -> PIL.Image.Image:
168
    t_img = pil_to_tensor(image)
169
    output = gaussian_blur_image(t_img, kernel_size=kernel_size, sigma=sigma)
170
    return to_pil_image(output, mode=image.mode)
171
172


173
@_register_kernel_internal(gaussian_blur, datapoints.Video)
174
175
176
def gaussian_blur_video(
    video: torch.Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None
) -> torch.Tensor:
177
    return gaussian_blur_image(video, kernel_size, sigma)
178
179


180
def to_dtype(inpt: torch.Tensor, dtype: torch.dtype = torch.float, scale: bool = False) -> torch.Tensor:
181
    if torch.jit.is_scripting():
182
        return to_dtype_image(inpt, dtype=dtype, scale=scale)
183
184
185
186
187

    _log_api_usage_once(to_dtype)

    kernel = _get_kernel(to_dtype, type(inpt))
    return kernel(inpt, dtype=dtype, scale=scale)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204


def _num_value_bits(dtype: torch.dtype) -> int:
    if dtype == torch.uint8:
        return 8
    elif dtype == torch.int8:
        return 7
    elif dtype == torch.int16:
        return 15
    elif dtype == torch.int32:
        return 31
    elif dtype == torch.int64:
        return 63
    else:
        raise TypeError(f"Number of value bits is only defined for integer dtypes, but got {dtype}.")


205
@_register_kernel_internal(to_dtype, torch.Tensor)
206
@_register_kernel_internal(to_dtype, datapoints.Image)
207
def to_dtype_image(image: torch.Tensor, dtype: torch.dtype = torch.float, scale: bool = False) -> torch.Tensor:
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

    if image.dtype == dtype:
        return image
    elif not scale:
        return image.to(dtype)

    float_input = image.is_floating_point()
    if torch.jit.is_scripting():
        # TODO: remove this branch as soon as `dtype.is_floating_point` is supported by JIT
        float_output = torch.tensor(0, dtype=dtype).is_floating_point()
    else:
        float_output = dtype.is_floating_point

    if float_input:
        # float to float
        if float_output:
            return image.to(dtype)

        # float to int
        if (image.dtype == torch.float32 and dtype in (torch.int32, torch.int64)) or (
            image.dtype == torch.float64 and dtype == torch.int64
        ):
            raise RuntimeError(f"The conversion from {image.dtype} to {dtype} cannot be performed safely.")

        # For data in the range `[0.0, 1.0]`, just multiplying by the maximum value of the integer range and converting
        # to the integer dtype  is not sufficient. For example, `torch.rand(...).mul(255).to(torch.uint8)` will only
        # be `255` if the input is exactly `1.0`. See https://github.com/pytorch/vision/pull/2078#issuecomment-612045321
        # for a detailed analysis.
        # To mitigate this, we could round before we convert to the integer dtype, but this is an extra operation.
        # Instead, we can also multiply by the maximum value plus something close to `1`. See
        # https://github.com/pytorch/vision/pull/2078#issuecomment-613524965 for details.
        eps = 1e-3
        max_value = float(_max_value(dtype))
        # We need to scale first since the conversion would otherwise turn the input range `[0.0, 1.0]` into the
        # discrete set `{0, 1}`.
        return image.mul(max_value + 1.0 - eps).to(dtype)
    else:
        # int to float
        if float_output:
            return image.to(dtype).mul_(1.0 / _max_value(image.dtype))

        # int to int
        num_value_bits_input = _num_value_bits(image.dtype)
        num_value_bits_output = _num_value_bits(dtype)

        if num_value_bits_input > num_value_bits_output:
            return image.bitwise_right_shift(num_value_bits_input - num_value_bits_output).to(dtype)
        else:
            return image.to(dtype).bitwise_left_shift_(num_value_bits_output - num_value_bits_input)


# We encourage users to use to_dtype() instead but we keep this for BC
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float32) -> torch.Tensor:
261
    return to_dtype_image(image, dtype=dtype, scale=True)
262
263


264
@_register_kernel_internal(to_dtype, datapoints.Video)
265
def to_dtype_video(video: torch.Tensor, dtype: torch.dtype = torch.float, scale: bool = False) -> torch.Tensor:
266
    return to_dtype_image(video, dtype, scale=scale)
267
268


269
270
@_register_kernel_internal(to_dtype, datapoints.BoundingBoxes, datapoint_wrapper=False)
@_register_kernel_internal(to_dtype, datapoints.Mask, datapoint_wrapper=False)
271
def _to_dtype_tensor_dispatch(inpt: torch.Tensor, dtype: torch.dtype, scale: bool = False) -> torch.Tensor:
272
273
    # We don't need to unwrap and rewrap here, since Datapoint.to() preserves the type
    return inpt.to(dtype)